ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.05012
13
462

Making AI Forget You: Data Deletion in Machine Learning

11 July 2019
Antonio A. Ginart
M. Guan
Gregory Valiant
James Zou
    MU
ArXivPDFHTML
Abstract

Intense recent discussions have focused on how to provide individuals with control over when their data can and cannot be used --- the EU's Right To Be Forgotten regulation is an example of this effort. In this paper we initiate a framework studying what to do when it is no longer permissible to deploy models derivative from specific user data. In particular, we formulate the problem of efficiently deleting individual data points from trained machine learning models. For many standard ML models, the only way to completely remove an individual's data is to retrain the whole model from scratch on the remaining data, which is often not computationally practical. We investigate algorithmic principles that enable efficient data deletion in ML. For the specific setting of k-means clustering, we propose two provably efficient deletion algorithms which achieve an average of over 100X improvement in deletion efficiency across 6 datasets, while producing clusters of comparable statistical quality to a canonical k-means++ baseline.

View on arXiv
Comments on this paper