Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.05755
Cited By
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
18 October 2016
Nicolas Papernot
Martín Abadi
Ulfar Erlingsson
Ian Goodfellow
Kunal Talwar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data"
50 / 215 papers shown
Title
A Review of Privacy-preserving Federated Learning for the Internet-of-Things
Christopher Briggs
Zhong Fan
Péter András
28
15
0
24 Apr 2020
Private Query Release Assisted by Public Data
Raef Bassily
Albert Cheu
Shay Moran
Aleksandar Nikolov
Jonathan R. Ullman
Zhiwei Steven Wu
76
47
0
23 Apr 2020
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
196
359
0
24 Mar 2020
Differentially Private Deep Learning with Smooth Sensitivity
Lichao Sun
Yingbo Zhou
Philip S. Yu
Caiming Xiong
FedML
21
9
0
01 Mar 2020
DP-MERF: Differentially Private Mean Embeddings with Random Features for Practical Privacy-Preserving Data Generation
Frederik Harder
Kamil Adamczewski
Mijung Park
SyDa
25
101
0
26 Feb 2020
A Better Bound Gives a Hundred Rounds: Enhanced Privacy Guarantees via
f
f
f
-Divergences
S. Asoodeh
Jiachun Liao
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
FedML
22
38
0
16 Jan 2020
Artificial Intelligence for Social Good: A Survey
Zheyuan Ryan Shi
Claire Wang
Fei Fang
AI4TS
32
81
0
07 Jan 2020
Assessing differentially private deep learning with Membership Inference
Daniel Bernau
Philip-William Grassal
J. Robl
Florian Kerschbaum
MIACV
FedML
26
23
0
24 Dec 2019
An Adaptive and Fast Convergent Approach to Differentially Private Deep Learning
Zhiying Xu
Shuyu Shi
A. Liu
Jun Zhao
Lin Chen
FedML
29
36
0
19 Dec 2019
Asynchronous Federated Learning with Differential Privacy for Edge Intelligence
Yanan Li
Shusen Yang
Xuebin Ren
Cong Zhao
FedML
19
33
0
17 Dec 2019
Federated Learning with Bayesian Differential Privacy
Aleksei Triastcyn
Boi Faltings
FedML
19
174
0
22 Nov 2019
Privacy Leakage Avoidance with Switching Ensembles
R. Izmailov
Peter Lin
Chris Mesterharm
S. Basu
25
2
0
18 Nov 2019
Distribution Density, Tails, and Outliers in Machine Learning: Metrics and Applications
Nicholas Carlini
Ulfar Erlingsson
Nicolas Papernot
OOD
OODD
26
62
0
29 Oct 2019
Secure Evaluation of Quantized Neural Networks
Anders Dalskov
Daniel E. Escudero
Marcel Keller
17
137
0
28 Oct 2019
Model Compression with Two-stage Multi-teacher Knowledge Distillation for Web Question Answering System
Ze Yang
Linjun Shou
Ming Gong
Wutao Lin
Daxin Jiang
28
92
0
18 Oct 2019
A blockchain-orchestrated Federated Learning architecture for healthcare consortia
Jonathan Passerat-Palmbach
Tyler Farnan
Robert C Miller
M. Gross
H. Flannery
Bill Gleim
FedML
14
54
0
12 Oct 2019
PPGAN: Privacy-preserving Generative Adversarial Network
Yi Liu
Jialiang Peng
James J. Q. Yu
Yi Wu
32
70
0
04 Oct 2019
Alleviating Privacy Attacks via Causal Learning
Shruti Tople
Amit Sharma
A. Nori
MIACV
OOD
33
32
0
27 Sep 2019
Synthetic Data for Deep Learning
Sergey I. Nikolenko
46
348
0
25 Sep 2019
Local Differential Privacy for Deep Learning
Pathum Chamikara Mahawaga Arachchige
P. Bertók
I. Khalil
Dongxi Liu
S. Çamtepe
Mohammed Atiquzzaman
41
220
0
08 Aug 2019
A Federated Learning Approach for Mobile Packet Classification
Evita Bakopoulou
Bálint Tillman
A. Markopoulou
21
30
0
30 Jul 2019
DP-LSSGD: A Stochastic Optimization Method to Lift the Utility in Privacy-Preserving ERM
Bao Wang
Quanquan Gu
M. Boedihardjo
Farzin Barekat
Stanley J. Osher
16
25
0
28 Jun 2019
Prediction Poisoning: Towards Defenses Against DNN Model Stealing Attacks
Tribhuvanesh Orekondy
Bernt Schiele
Mario Fritz
AAML
13
164
0
26 Jun 2019
G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators
Yunhui Long
Wei Ping
Zhuolin Yang
B. Kailkhura
Aston Zhang
C.A. Gunter
Bo-wen Li
22
72
0
21 Jun 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
58
482
0
12 Jun 2019
SoK: Differential Privacies
Damien Desfontaines
Balázs Pejó
33
122
0
04 Jun 2019
Differentially Private Learning with Adaptive Clipping
Galen Andrew
Om Thakkar
H. B. McMahan
Swaroop Ramaswamy
FedML
30
331
0
09 May 2019
Mimic Learning to Generate a Shareable Network Intrusion Detection Model
Ahmed A. Shafee
Mohamed Baza
Douglas A. Talbert
M. Fouda
Mahmoud Nabil
Mohamed Mahmoud
36
29
0
02 May 2019
Privacy-preserving Active Learning on Sensitive Data for User Intent Classification
Oluwaseyi Feyisetan
Thomas Drake
Borja Balle
Tom Diethe
14
10
0
26 Mar 2019
One-Shot Federated Learning
Neel Guha
Ameet Talwalkar
Virginia Smith
FedML
30
212
0
28 Feb 2019
Evaluating Differentially Private Machine Learning in Practice
Bargav Jayaraman
David Evans
15
7
0
24 Feb 2019
Differentially Private Generative Adversarial Networks for Time Series, Continuous, and Discrete Open Data
Lorenzo Frigerio
Anderson Santana de Oliveira
L. Gomez
Patrick Duverger
SyDa
AI4TS
28
110
0
08 Jan 2019
A General Approach to Adding Differential Privacy to Iterative Training Procedures
H. B. McMahan
Galen Andrew
Ulfar Erlingsson
Steve Chien
Ilya Mironov
Nicolas Papernot
Peter Kairouz
19
192
0
15 Dec 2018
No Peek: A Survey of private distributed deep learning
Praneeth Vepakomma
Tristan Swedish
Ramesh Raskar
O. Gupta
Abhimanyu Dubey
SyDa
FedML
30
100
0
08 Dec 2018
Differentially Private Data Generative Models
Qingrong Chen
Chong Xiang
Minhui Xue
Bo-wen Li
Nikita Borisov
Dali Kaafar
Haojin Zhu
SyDa
AAML
15
79
0
06 Dec 2018
Split learning for health: Distributed deep learning without sharing raw patient data
Praneeth Vepakomma
O. Gupta
Tristan Swedish
Ramesh Raskar
FedML
63
692
0
03 Dec 2018
An overview of deep learning in medical imaging focusing on MRI
A. Lundervold
A. Lundervold
OOD
22
1,608
0
25 Nov 2018
Faster CryptoNets: Leveraging Sparsity for Real-World Encrypted Inference
Edward Chou
Josh Beal
Daniel Levy
Serena Yeung
Albert Haque
Li Fei-Fei
32
198
0
25 Nov 2018
Private Model Compression via Knowledge Distillation
Ji Wang
Weidong Bao
Lichao Sun
Xiaomin Zhu
Bokai Cao
Philip S. Yu
FedML
6
116
0
13 Nov 2018
A generic framework for privacy preserving deep learning
Wenbo Guo
Yunzhe Tao
Morten Dahl
Sui Huang
Masashi Sugiyama
Daniel Rueckert
Lin Lin
FedML
15
428
0
09 Nov 2018
Private Machine Learning in TensorFlow using Secure Computation
Morten Dahl
Jason V. Mancuso
Yann Dupis
Ben Decoste
Morgan Giraud
Ian Livingstone
Justin Patriquin
Gavin Uhma
FedML
18
75
0
18 Oct 2018
Distributed learning of deep neural network over multiple agents
O. Gupta
Ramesh Raskar
FedML
OOD
17
597
0
14 Oct 2018
Deep Learning Towards Mobile Applications
Ji Wang
Bokai Cao
Philip S. Yu
Lichao Sun
Weidong Bao
Xiaomin Zhu
HAI
32
98
0
10 Sep 2018
Not Just Privacy: Improving Performance of Private Deep Learning in Mobile Cloud
Ji Wang
Jianguo Zhang
Weidong Bao
Xiaomin Zhu
Bokai Cao
Philip S. Yu
26
193
0
10 Sep 2018
Privacy Amplification by Iteration
Vitaly Feldman
Ilya Mironov
Kunal Talwar
Abhradeep Thakurta
FedML
23
170
0
20 Aug 2018
Differentially-Private "Draw and Discard" Machine Learning
Vasyl Pihur
Aleksandra Korolova
Frederick Liu
Subhash Sankuratripati
M. Yung
Dachuan Huang
Ruogu Zeng
FedML
33
39
0
11 Jul 2018
Towards Robust Evaluations of Continual Learning
Sebastian Farquhar
Y. Gal
CLL
28
305
0
24 May 2018
Gradient-Leaks: Understanding and Controlling Deanonymization in Federated Learning
Tribhuvanesh Orekondy
Seong Joon Oh
Yang Zhang
Bernt Schiele
Mario Fritz
PICV
FedML
359
37
0
15 May 2018
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
81
1,455
0
10 May 2018
Privacy-preserving Prediction
Cynthia Dwork
Vitaly Feldman
25
90
0
27 Mar 2018
Previous
1
2
3
4
5
Next