Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.05755
Cited By
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
18 October 2016
Nicolas Papernot
Martín Abadi
Ulfar Erlingsson
Ian Goodfellow
Kunal Talwar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data"
50 / 216 papers shown
Title
Revisiting Hyperparameter Tuning with Differential Privacy
Youlong Ding
Xueyang Wu
24
0
0
03 Nov 2022
Private Semi-supervised Knowledge Transfer for Deep Learning from Noisy Labels
Qiuchen Zhang
Jing Ma
Jian Lou
Li Xiong
Xiaoqian Jiang
NoLa
21
0
0
03 Nov 2022
Teacher-Student Architecture for Knowledge Learning: A Survey
Chengming Hu
Xuan Li
Dan Liu
Xi Chen
Ju Wang
Xue Liu
29
35
0
28 Oct 2022
Private and Reliable Neural Network Inference
Nikola Jovanović
Marc Fischer
Samuel Steffen
Martin Vechev
22
14
0
27 Oct 2022
Federated Continual Learning to Detect Accounting Anomalies in Financial Auditing
Marco Schreyer
Hamed Hemati
Damian Borth
M. Vasarhelyi
FedML
45
3
0
26 Oct 2022
DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling
Jianxin Wei
Ergute Bao
X. Xiao
Yin Yang
46
20
0
18 Oct 2022
Federated Learning with Privacy-Preserving Ensemble Attention Distillation
Xuan Gong
Liangchen Song
Rishi Vedula
Abhishek Sharma
Meng Zheng
...
Arun Innanje
Terrence Chen
Junsong Yuan
David Doermann
Ziyan Wu
FedML
30
27
0
16 Oct 2022
Mitigating Unintended Memorization in Language Models via Alternating Teaching
Zhe Liu
Xuedong Zhang
Fuchun Peng
38
3
0
13 Oct 2022
An Ensemble Teacher-Student Learning Approach with Poisson Sub-sampling to Differential Privacy Preserving Speech Recognition
Chao-Han Huck Yang
Jun Qi
Sabato Marco Siniscalchi
Chin-Hui Lee
26
4
0
12 Oct 2022
An Experimental Study on Private Aggregation of Teacher Ensemble Learning for End-to-End Speech Recognition
Chao-Han Huck Yang
I-Fan Chen
A. Stolcke
Sabato Marco Siniscalchi
Chin-Hui Lee
32
2
0
11 Oct 2022
Differentially Private Deep Learning with ModelMix
Hanshen Xiao
Jun Wan
S. Devadas
29
3
0
07 Oct 2022
In Differential Privacy, There is Truth: On Vote Leakage in Ensemble Private Learning
Jiaqi Wang
R. Schuster
Ilia Shumailov
David Lie
Nicolas Papernot
FedML
33
3
0
22 Sep 2022
Preserving Privacy in Federated Learning with Ensemble Cross-Domain Knowledge Distillation
Xuan Gong
Abhishek Sharma
Srikrishna Karanam
Ziyan Wu
Terrence Chen
David Doermann
Arun Innanje
FedML
24
70
0
10 Sep 2022
Membership Inference Attacks by Exploiting Loss Trajectory
Yiyong Liu
Zhengyu Zhao
Michael Backes
Yang Zhang
27
98
0
31 Aug 2022
Federated and Privacy-Preserving Learning of Accounting Data in Financial Statement Audits
Marco Schreyer
Timur Sattarov
Damian Borth
MLAU
36
15
0
26 Aug 2022
Semi-Supervised and Unsupervised Deep Visual Learning: A Survey
Yanbei Chen
Massimiliano Mancini
Xiatian Zhu
Zeynep Akata
47
114
0
24 Aug 2022
"Am I Private and If So, how Many?" - Communicating Privacy Guarantees of Differential Privacy with Risk Communication Formats
Daniel Franzen
Saskia Nuñez von Voigt
Peter Sorries
Florian Tschorsch
Claudia Muller-Birn
31
19
0
23 Aug 2022
Private, Efficient, and Accurate: Protecting Models Trained by Multi-party Learning with Differential Privacy
Wenqiang Ruan
Ming Xu
Wenjing Fang
Li Wang
Lei Wang
Wei Han
40
12
0
18 Aug 2022
Private Estimation with Public Data
Alex Bie
Gautam Kamath
Vikrant Singhal
36
28
0
16 Aug 2022
Pose Uncertainty Aware Movement Synchrony Estimation via Spatial-Temporal Graph Transformer
Jicheng Li
Anjana Bhat
R. Barmaki
ViT
27
5
0
01 Aug 2022
FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning
Yuanhao Xiong
Ruochen Wang
Minhao Cheng
Felix X. Yu
Cho-Jui Hsieh
FedML
DD
50
82
0
20 Jul 2022
Federated and Transfer Learning: A Survey on Adversaries and Defense Mechanisms
Ehsan Hallaji
R. Razavi-Far
M. Saif
AAML
FedML
27
13
0
05 Jul 2022
Measuring Forgetting of Memorized Training Examples
Matthew Jagielski
Om Thakkar
Florian Tramèr
Daphne Ippolito
Katherine Lee
...
Eric Wallace
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Chiyuan Zhang
TDI
75
102
0
30 Jun 2022
Differentially Private Federated Combinatorial Bandits with Constraints
Sambhav Solanki
Samhita Kanaparthy
Sankarshan Damle
Sujit Gujar
FedML
29
4
0
27 Jun 2022
Bayesian Estimation of Differential Privacy
Santiago Zanella Béguelin
Lukas Wutschitz
Shruti Tople
A. Salem
Victor Rühle
Andrew Paverd
Mohammad Naseri
Boris Köpf
Daniel Jones
27
36
0
10 Jun 2022
Differential Privacy: What is all the noise about?
Roxana Dánger Mercaderes
38
3
0
19 May 2022
On the Difficulty of Defending Self-Supervised Learning against Model Extraction
Adam Dziedzic
Nikita Dhawan
Muhammad Ahmad Kaleem
Jonas Guan
Nicolas Papernot
MIACV
56
22
0
16 May 2022
Synthetic Data -- what, why and how?
James Jordon
Lukasz Szpruch
F. Houssiau
M. Bottarelli
Giovanni Cherubin
Carsten Maple
Samuel N. Cohen
Adrian Weller
48
109
0
06 May 2022
PhysioGAN: Training High Fidelity Generative Model for Physiological Sensor Readings
M. Alzantot
L. Garcia
Mani B. Srivastava
27
1
0
25 Apr 2022
"Am I Private and If So, how Many?" -- Using Risk Communication Formats for Making Differential Privacy Understandable
Daniel Franzen
Saskia Nuñez von Voigt
Peter Sorries
Florian Tschorsch
Claudia Muller-Birn Freie Universitat Berlin
34
9
0
08 Apr 2022
CTAB-GAN+: Enhancing Tabular Data Synthesis
Zilong Zhao
A. Kunar
Robert Birke
L. Chen
32
78
0
01 Apr 2022
Adaptive Private-K-Selection with Adaptive K and Application to Multi-label PATE
Yuqing Zhu
Yu-Xiang Wang
37
18
0
30 Mar 2022
Distributed data analytics
Richard Mortier
Hamed Haddadi
S. S. Rodríguez
Liang Wang
29
2
0
26 Mar 2022
A review of Generative Adversarial Networks for Electronic Health Records: applications, evaluation measures and data sources
Ghadeer O. Ghosheh
Jin Li
T. Zhu
35
32
0
14 Mar 2022
One Parameter Defense -- Defending against Data Inference Attacks via Differential Privacy
Dayong Ye
Sheng Shen
Tianqing Zhu
B. Liu
Wanlei Zhou
MIACV
16
62
0
13 Mar 2022
Differential Privacy Amplification in Quantum and Quantum-inspired Algorithms
Armando Angrisani
Mina Doosti
E. Kashefi
24
12
0
07 Mar 2022
Differentially Private Label Protection in Split Learning
Xin Yang
Jiankai Sun
Yuanshun Yao
Junyuan Xie
Chong-Jun Wang
FedML
47
36
0
04 Mar 2022
Faking feature importance: A cautionary tale on the use of differentially-private synthetic data
Oscar Giles
Kasra Hosseini
Grigorios Mingas
Oliver Strickson
Louise A. Bowler
...
A. Heppenstall
N. Lomax
N. Malleson
Martin O'Reilly
Sebastian Vollmerteke
23
8
0
02 Mar 2022
GAP: Differentially Private Graph Neural Networks with Aggregation Perturbation
Sina Sajadmanesh
Ali Shahin Shamsabadi
A. Bellet
D. Gática-Pérez
40
63
0
02 Mar 2022
MIAShield: Defending Membership Inference Attacks via Preemptive Exclusion of Members
Ismat Jarin
Birhanu Eshete
32
9
0
02 Mar 2022
Does Label Differential Privacy Prevent Label Inference Attacks?
Ruihan Wu
Jinfu Zhou
Kilian Q. Weinberger
Chuan Guo
28
15
0
25 Feb 2022
Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation
Wenxiao Wang
Alexander Levine
S. Feizi
AAML
20
60
0
05 Feb 2022
Differentially Private Graph Classification with GNNs
Tamara T. Mueller
Johannes C. Paetzold
Chinmay Prabhakar
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
52
18
0
05 Feb 2022
Lessons from the AdKDD'21 Privacy-Preserving ML Challenge
Eustache Diemert
Romain Fabre
Alexandre Gilotte
Fei Jia
Basile Leparmentier
Jérémie Mary
Zhonghua Qu
Ugo Tanielian
Hui Yang
59
6
0
31 Jan 2022
Survey on Federated Learning Threats: concepts, taxonomy on attacks and defences, experimental study and challenges
Nuria Rodríguez-Barroso
Daniel Jiménez López
M. V. Luzón
Francisco Herrera
Eugenio Martínez-Cámara
FedML
37
212
0
20 Jan 2022
Financial Vision Based Differential Privacy Applications
Jun-Hao Chen
Yi-Jen Wang
Yun-Cheng Tsai
Samuel Yen-Chi Chen
FedML
21
1
0
28 Dec 2021
SHAPr: An Efficient and Versatile Membership Privacy Risk Metric for Machine Learning
Vasisht Duddu
S. Szyller
Nadarajah Asokan
32
12
0
04 Dec 2021
Public Data-Assisted Mirror Descent for Private Model Training
Ehsan Amid
Arun Ganesh
Rajiv Mathews
Swaroop Indra Ramaswamy
Shuang Song
Thomas Steinke
Vinith Suriyakumar
Om Thakkar
Abhradeep Thakurta
21
49
0
01 Dec 2021
Decentralized Federated Learning through Proxy Model Sharing
Shivam Kalra
Junfeng Wen
Jesse C. Cresswell
M. Volkovs
Hamid R. Tizhoosh
FedML
19
94
0
22 Nov 2021
Don't Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence
Tianshi Cao
Alex Bie
Arash Vahdat
Sanja Fidler
Karsten Kreis
SyDa
DiffM
19
71
0
01 Nov 2021
Previous
1
2
3
4
5
Next