ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.08130
13
75

Private Machine Learning in TensorFlow using Secure Computation

18 October 2018
Morten Dahl
Jason V. Mancuso
Yann Dupis
Ben Decoste
Morgan Giraud
Ian Livingstone
Justin Patriquin
Gavin Uhma
    FedML
ArXivPDFHTML
Abstract

We present a framework for experimenting with secure multi-party computation directly in TensorFlow. By doing so we benefit from several properties valuable to both researchers and practitioners, including tight integration with ordinary machine learning processes, existing optimizations for distributed computation in TensorFlow, high-level abstractions for expressing complex algorithms and protocols, and an expanded set of familiar tooling. We give an open source implementation of a state-of-the-art protocol and report on concrete benchmarks using typical models from private machine learning.

View on arXiv
Comments on this paper