ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.03871
19
330

Differentially Private Learning with Adaptive Clipping

9 May 2019
Galen Andrew
Om Thakkar
H. B. McMahan
Swaroop Ramaswamy
    FedML
ArXivPDFHTML
Abstract

Existing approaches for training neural networks with user-level differential privacy (e.g., DP Federated Averaging) in federated learning (FL) settings involve bounding the contribution of each user's model update by clipping it to some constant value. However there is no good a priori setting of the clipping norm across tasks and learning settings: the update norm distribution depends on the model architecture and loss, the amount of data on each device, the client learning rate, and possibly various other parameters. We propose a method wherein instead of a fixed clipping norm, one clips to a value at a specified quantile of the update norm distribution, where the value at the quantile is itself estimated online, with differential privacy. The method tracks the quantile closely, uses a negligible amount of privacy budget, is compatible with other federated learning technologies such as compression and secure aggregation, and has a straightforward joint DP analysis with DP-FedAvg. Experiments demonstrate that adaptive clipping to the median update norm works well across a range of realistic federated learning tasks, sometimes outperforming even the best fixed clip chosen in hindsight, and without the need to tune any clipping hyperparameter.

View on arXiv
Comments on this paper