Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.05755
Cited By
v1
v2
v3
v4 (latest)
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
18 October 2016
Nicolas Papernot
Martín Abadi
Ulfar Erlingsson
Ian Goodfellow
Kunal Talwar
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data"
50 / 353 papers shown
Title
The Hitchhiker's Guide to Efficient, End-to-End, and Tight DP Auditing
Meenatchi Sundaram Muthu Selva Annamalai
Borja Balle
Jamie Hayes
Georgios Kaissis
Emiliano De Cristofaro
35
0
0
20 Jun 2025
Beyond Laplace and Gaussian: Exploring the Generalized Gaussian Mechanism for Private Machine Learning
Roy Rinberg
Ilia Shumailov
Vikrant Singhal
Rachel Cummings
Nicolas Papernot
28
0
0
14 Jun 2025
Privacy Amplification Through Synthetic Data: Insights from Linear Regression
Clément Pierquin
A. Bellet
Marc Tommasi
Matthieu Boussard
MIACV
117
0
0
05 Jun 2025
Differential Privacy for Deep Learning in Medicine
Marziyeh Mohammadi
Mohsen Vejdanihemmat
Mahshad Lotfinia
M. Rusu
Daniel Truhn
Andreas K. Maier
Soroosh Tayebi Arasteh
49
0
0
31 May 2025
Evaluating Privacy-Utility Tradeoffs in Synthetic Smart Grid Data
Andre Catarino
Rui Melo
Rui Abreu
Luís Cruz
DiffM
39
0
0
20 May 2025
A Case Study Exploring the Current Landscape of Synthetic Medical Record Generation with Commercial LLMs
Yihan Lin
Zhirong Bella Yu
Simon Lee
SyDa
146
1
0
20 Apr 2025
DP-GPL: Differentially Private Graph Prompt Learning
Jing Xu
Franziska Boenisch
Iyiola Emmanuel Olatunji
Adam Dziedzic
AAML
111
0
0
13 Mar 2025
Trustworthy Machine Learning via Memorization and the Granular Long-Tail: A Survey on Interactions, Tradeoffs, and Beyond
Qiongxiu Li
Xiaoyu Luo
Yiyi Chen
Johannes Bjerva
242
2
0
10 Mar 2025
SoK: What Makes Private Learning Unfair?
Kai Yao
Marc Juarez
78
0
0
24 Jan 2025
Advancing privacy in learning analytics using differential privacy
Qinyi Liu
Ronas Shakya
Mohammad Khalil
Jelena Jovanovic
83
2
0
03 Jan 2025
Generalizing Trust: Weak-to-Strong Trustworthiness in Language Models
Martin Pawelczyk
Lillian Sun
Zhenting Qi
Aounon Kumar
Himabindu Lakkaraju
162
3
0
03 Jan 2025
Adversarial Sample-Based Approach for Tighter Privacy Auditing in Final Model-Only Scenarios
Sangyeon Yoon
Wonje Jeung
Albert No
189
0
0
02 Dec 2024
Data-adaptive Differentially Private Prompt Synthesis for In-Context Learning
Fengyu Gao
Ruida Zhou
T. Wang
Cong Shen
Jing Yang
95
3
0
15 Oct 2024
PFGuard: A Generative Framework with Privacy and Fairness Safeguards
Soyeon Kim
Yuji Roh
Geon Heo
Steven Euijong Whang
125
0
0
03 Oct 2024
Enhancing Quantum Security over Federated Learning via Post-Quantum Cryptography
Pingzhi Li
Tianlong Chen
Junyu Liu
FedML
73
1
0
06 Sep 2024
Learning Privacy-Preserving Student Networks via Discriminative-Generative Distillation
Shiming Ge
Bochao Liu
Pengju Wang
Yong Li
Dan Zeng
FedML
102
11
0
04 Sep 2024
Transformer-based Federated Learning for Multi-Label Remote Sensing Image Classification
Baris Büyüktas
Kenneth Weitzel
Sebastian Völkers
Felix Zailskas
Begüm Demir
95
6
0
24 May 2024
Public-data Assisted Private Stochastic Optimization: Power and Limitations
Enayat Ullah
Michael Menart
Raef Bassily
Cristóbal Guzmán
Raman Arora
79
2
0
06 Mar 2024
State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey
Chaoyu Zhang
Shaoyu Li
AILaw
135
4
0
25 Feb 2024
On the Byzantine-Resilience of Distillation-Based Federated Learning
Christophe Roux
Max Zimmer
Sebastian Pokutta
AAML
150
1
0
19 Feb 2024
FedSiKD: Clients Similarity and Knowledge Distillation: Addressing Non-i.i.d. and Constraints in Federated Learning
Yousef Alsenani
Rahul Mishra
Khaled R. Ahmed
Atta Ur Rahman
FedML
102
2
0
14 Feb 2024
Quantum Privacy Aggregation of Teacher Ensembles (QPATE) for Privacy-preserving Quantum Machine Learning
William Watkins
Heehwan Wang
Sang-Peel Bae
Huan-Hsin Tseng
Jiook Cha
Samuel Yen-Chi Chen
Shinjae Yoo
29
3
0
15 Jan 2024
Hot PATE: Private Aggregation of Distributions for Diverse Task
Edith Cohen
Benjamin Cohen-Wang
Xin Lyu
Jelani Nelson
Tamas Sarlos
Uri Stemmer
119
4
0
04 Dec 2023
Preserving Node-level Privacy in Graph Neural Networks
Zihang Xiang
Tianhao Wang
Di Wang
83
12
0
12 Nov 2023
Forgetting Private Textual Sequences in Language Models via Leave-One-Out Ensemble
Zhe Liu
Ozlem Kalinli
MU
KELM
90
2
0
28 Sep 2023
Generating tabular datasets under differential privacy
G. Truda
DiffM
61
6
0
28 Aug 2023
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
86
13
0
11 Aug 2023
Teacher-Student Architecture for Knowledge Distillation: A Survey
Chengming Hu
Xuan Li
Danyang Liu
Haolun Wu
Xi Chen
Ju Wang
Xue Liu
94
19
0
08 Aug 2023
Spectral-DP: Differentially Private Deep Learning through Spectral Perturbation and Filtering
Ce Feng
Nuo Xu
Wujie Wen
Parv Venkitasubramaniam
Caiwen Ding
63
4
0
25 Jul 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
109
28
0
20 Jul 2023
When Synthetic Data Met Regulation
Georgi Ganev
84
2
0
01 Jul 2023
FFPDG: Fast, Fair and Private Data Generation
Weijie Xu
Jinjin Zhao
Francis Iannacci
Bo Wang
83
12
0
30 Jun 2023
Towards Regulatable AI Systems: Technical Gaps and Policy Opportunities
Xudong Shen
H. Brown
Jiashu Tao
Martin Strobel
Yao Tong
Akshay Narayan
Harold Soh
Finale Doshi-Velez
105
3
0
22 Jun 2023
An information-Theoretic Approach to Semi-supervised Transfer Learning
Daniel Jakubovitz
David Uliel
Miguel R. D. Rodrigues
Raja Giryes
64
1
0
11 Jun 2023
Confidential Truth Finding with Multi-Party Computation (Extended Version)
Angelo Saadeh
Pierre Senellart
S. Bressan
HILM
FedML
56
1
0
24 May 2023
Differentially Private Adapters for Parameter Efficient Acoustic Modeling
Chun-Wei Ho
Chao-Han Huck Yang
Sabato Marco Siniscalchi
100
1
0
19 May 2023
DPMLBench: Holistic Evaluation of Differentially Private Machine Learning
Chengkun Wei
Ming-Hui Zhao
Zhikun Zhang
Min Chen
Wenlong Meng
Bodong Liu
Yuan-shuo Fan
Wenzhi Chen
96
11
0
10 May 2023
FedPDD: A Privacy-preserving Double Distillation Framework for Cross-silo Federated Recommendation
Sheng Wan
Dashan Gao
Hanlin Gu
Daning Hu
FedML
65
7
0
09 May 2023
Practical Differentially Private and Byzantine-resilient Federated Learning
Zihang Xiang
Tianhao Wang
Wanyu Lin
Di Wang
FedML
75
23
0
15 Apr 2023
When approximate design for fast homomorphic computation provides differential privacy guarantees
Arnaud Grivet Sébert
Martin Zuber
Oana Stan
Renaud Sirdey
Cédric Gouy-Pailler
TPM
55
1
0
06 Apr 2023
PRIMO: Private Regression in Multiple Outcomes
Seth Neel
85
0
0
07 Mar 2023
Personalized Privacy-Preserving Framework for Cross-Silo Federated Learning
Van Tuan Tran
Huy Hieu Pham
Kok-Seng Wong
FedML
98
8
0
22 Feb 2023
Netflix and Forget: Efficient and Exact Machine Unlearning from Bi-linear Recommendations
Mimee Xu
Jiankai Sun
Xin Yang
K. Yao
Chong-Jun Wang
MU
CML
CLL
52
13
0
13 Feb 2023
Private GANs, Revisited
Alex Bie
Gautam Kamath
Guojun Zhang
106
16
0
06 Feb 2023
Practical Differentially Private Hyperparameter Tuning with Subsampling
A. Koskela
Tejas D. Kulkarni
114
18
0
27 Jan 2023
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
98
19
0
22 Jan 2023
Generalized PTR: User-Friendly Recipes for Data-Adaptive Algorithms with Differential Privacy
Rachel Redberg
Yuqing Zhu
Yu Wang
93
7
0
31 Dec 2022
PreFair: Privately Generating Justifiably Fair Synthetic Data
David Pujol
Amir Gilad
Ashwin Machanavajjhala
79
7
0
20 Dec 2022
Regression with Label Differential Privacy
Badih Ghazi
Pritish Kamath
Ravi Kumar
Ethan Leeman
Pasin Manurangsi
A. Varadarajan
Chiyuan Zhang
95
17
0
12 Dec 2022
Exploring the Limits of Differentially Private Deep Learning with Group-wise Clipping
Jiyan He
Xuechen Li
Da Yu
Huishuai Zhang
Janardhan Kulkarni
Y. Lee
A. Backurs
Nenghai Yu
Jiang Bian
122
49
0
03 Dec 2022
1
2
3
4
5
6
7
8
Next