Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,407 papers shown
Title
Stochastic Gradient Descent without Full Data Shuffle
Lijie Xu
Shuang Qiu
Binhang Yuan
Jiawei Jiang
Cédric Renggli
...
Guoliang Li
Ji Liu
Wentao Wu
Jieping Ye
Ce Zhang
17
2
0
12 Jun 2022
Fisher SAM: Information Geometry and Sharpness Aware Minimisation
Minyoung Kim
Da Li
S. Hu
Timothy M. Hospedales
AAML
30
70
0
10 Jun 2022
A Unified Convergence Theorem for Stochastic Optimization Methods
Xiao Li
Andre Milzarek
41
11
0
08 Jun 2022
Interference Management for Over-the-Air Federated Learning in Multi-Cell Wireless Networks
Zhibin Wang
Yong Zhou
Yuanming Shi
W. Zhuang
43
69
0
06 Jun 2022
A Control Theoretic Framework for Adaptive Gradient Optimizers in Machine Learning
Kushal Chakrabarti
Nikhil Chopra
ODL
AI4CE
13
6
0
04 Jun 2022
Fine-tuning Language Models over Slow Networks using Activation Compression with Guarantees
Jue Wang
Binhang Yuan
Luka Rimanic
Yongjun He
Tri Dao
Beidi Chen
Christopher Ré
Ce Zhang
AI4CE
31
11
0
02 Jun 2022
Computing the Variance of Shuffling Stochastic Gradient Algorithms via Power Spectral Density Analysis
Carles Domingo-Enrich
11
0
0
01 Jun 2022
Special Properties of Gradient Descent with Large Learning Rates
Amirkeivan Mohtashami
Martin Jaggi
Sebastian U. Stich
MLT
21
9
0
30 May 2022
Standalone Neural ODEs with Sensitivity Analysis
Rym Jaroudi
Lukáš Malý
Gabriel Eilertsen
B. Johansson
Jonas Unger
George Baravdish
23
0
0
27 May 2022
Transformers from an Optimization Perspective
Yongyi Yang
Zengfeng Huang
David Wipf
48
26
0
27 May 2022
Scalable and Low-Latency Federated Learning with Cooperative Mobile Edge Networking
Zhenxiao Zhang
Zhidong Gao
Yuanxiong Guo
Yanmin Gong
FedML
23
33
0
25 May 2022
Online Deep Equilibrium Learning for Regularization by Denoising
Jiaming Liu
Xiaojian Xu
Weijie Gan
Shirin Shoushtari
Ulugbek S. Kamilov
47
27
0
25 May 2022
Fast Stochastic Composite Minimization and an Accelerated Frank-Wolfe Algorithm under Parallelization
Benjamin Dubois-Taine
Francis R. Bach
Quentin Berthet
Adrien B. Taylor
30
5
0
25 May 2022
Learning from time-dependent streaming data with online stochastic algorithms
Antoine Godichon-Baggioni
Nicklas Werge
Olivier Wintenberger
40
3
0
25 May 2022
Byzantine Machine Learning Made Easy by Resilient Averaging of Momentums
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
Rafael Pinot
John Stephan
FedML
36
67
0
24 May 2022
Chaotic Regularization and Heavy-Tailed Limits for Deterministic Gradient Descent
S. H. Lim
Yijun Wan
Umut cSimcsekli
40
12
0
23 May 2022
Nothing makes sense in deep learning, except in the light of evolution
Artem Kaznatcheev
Konrad Paul Kording
11
1
0
20 May 2022
Service Delay Minimization for Federated Learning over Mobile Devices
Rui Chen
Dian Shi
Xiaoqi Qin
Dongjie Liu
Miao Pan
Shuguang Cui
FedML
45
32
0
19 May 2022
On the efficiency of Stochastic Quasi-Newton Methods for Deep Learning
M. Yousefi
Angeles Martinez
ODL
18
1
0
18 May 2022
Can We Do Better Than Random Start? The Power of Data Outsourcing
Yi Chen
Jing-rong Dong
Xin T. Tong
14
0
0
17 May 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
32
4
0
15 May 2022
Decentralized Stochastic Optimization with Inherent Privacy Protection
Yongqiang Wang
H. Vincent Poor
29
37
0
08 May 2022
LAWS: Look Around and Warm-Start Natural Gradient Descent for Quantum Neural Networks
Zeyi Tao
Jindi Wu
Qi Xia
Qun Li
36
9
0
05 May 2022
Byzantine Fault Tolerance in Distributed Machine Learning : a Survey
Djamila Bouhata
Hamouma Moumen
Moumen Hamouma
Ahcène Bounceur
AI4CE
31
7
0
05 May 2022
Structural Extensions of Basis Pursuit: Guarantees on Adversarial Robustness
Dávid Szeghy
Mahmoud Aslan
Á. Fóthi
Balázs Mészáros
Z. '. Milacski
András Lőrincz
AAML
24
0
0
05 May 2022
FedShuffle: Recipes for Better Use of Local Work in Federated Learning
Samuel Horváth
Maziar Sanjabi
Lin Xiao
Peter Richtárik
Michael G. Rabbat
FedML
33
21
0
27 Apr 2022
Streaming Algorithms for High-Dimensional Robust Statistics
Ilias Diakonikolas
D. Kane
Ankit Pensia
Thanasis Pittas
24
21
0
26 Apr 2022
Hessian Averaging in Stochastic Newton Methods Achieves Superlinear Convergence
Sen Na
Michal Derezinski
Michael W. Mahoney
27
16
0
20 Apr 2022
FedCau: A Proactive Stop Policy for Communication and Computation Efficient Federated Learning
Afsaneh Mahmoudi
H. S. Ghadikolaei
José Hélio da Cruz Júnior
Carlo Fischione
30
9
0
16 Apr 2022
Minimizing Control for Credit Assignment with Strong Feedback
Alexander Meulemans
Matilde Tristany Farinha
Maria R. Cervera
João Sacramento
Benjamin Grewe
22
17
0
14 Apr 2022
Rethinking Exponential Averaging of the Fisher
C. Puiu
28
1
0
10 Apr 2022
Refined Convergence and Topology Learning for Decentralized SGD with Heterogeneous Data
B. L. Bars
A. Bellet
Marc Tommasi
Erick Lavoie
Anne-Marie Kermarrec
FedML
37
25
0
09 Apr 2022
Distributed Evolution Strategies for Black-box Stochastic Optimization
Xiaoyu He
Zibin Zheng
Chuan Chen
Yuren Zhou
Chuan Luo
Qingwei Lin
29
5
0
09 Apr 2022
Federated Learning with Partial Model Personalization
Krishna Pillutla
Kshitiz Malik
Abdel-rahman Mohamed
Michael G. Rabbat
Maziar Sanjabi
Lin Xiao
FedML
41
157
0
08 Apr 2022
Learning from Untrimmed Videos: Self-Supervised Video Representation Learning with Hierarchical Consistency
Zhiwu Qing
Shiwei Zhang
Ziyuan Huang
Yi Tian Xu
Xiang Wang
Mingqian Tang
Changxin Gao
Rong Jin
Nong Sang
SSL
AI4TS
31
17
0
06 Apr 2022
Nonlinear gradient mappings and stochastic optimization: A general framework with applications to heavy-tail noise
D. Jakovetić
Dragana Bajović
Anit Kumar Sahu
S. Kar
Nemanja Milošević
Dusan Stamenkovic
19
12
0
06 Apr 2022
Imaging Conductivity from Current Density Magnitude using Neural Networks
Bangti Jin
Xiyao Li
Xiliang Lu
24
12
0
05 Apr 2022
A Derivation of Nesterov's Accelerated Gradient Algorithm from Optimal Control Theory
I. Michael Ross
23
4
0
29 Mar 2022
Local optimisation of Nyström samples through stochastic gradient descent
Matthew Hutchings
B. Gauthier
18
2
0
24 Mar 2022
Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography
J. Kim
Taha Toghani
César A. Uribe
Anastasios Kyrillidis
35
3
0
22 Mar 2022
A Note on Target Q-learning For Solving Finite MDPs with A Generative Oracle
Ziniu Li
Tian Xu
Yang Yu
55
5
0
22 Mar 2022
Minimum Variance Unbiased N:M Sparsity for the Neural Gradients
Brian Chmiel
Itay Hubara
Ron Banner
Daniel Soudry
23
10
0
21 Mar 2022
A Local Convergence Theory for the Stochastic Gradient Descent Method in Non-Convex Optimization With Non-isolated Local Minima
Tae-Eon Ko
Xiantao Li
30
2
0
21 Mar 2022
Learning latent causal relationships in multiple time series
J. Dmochowski
CML
AI4TS
11
0
0
21 Mar 2022
Convergence rates of the stochastic alternating algorithm for bi-objective optimization
Suyun Liu
Luis Nunes Vicente
31
3
0
20 Mar 2022
On the Properties of Adversarially-Trained CNNs
Mattia Carletti
M. Terzi
Gian Antonio Susto
AAML
34
1
0
17 Mar 2022
Federated Minimax Optimization: Improved Convergence Analyses and Algorithms
Pranay Sharma
Rohan Panda
Gauri Joshi
P. Varshney
FedML
21
47
0
09 Mar 2022
Machine Learning based Optimal Feedback Control for Microgrid Stabilization
T. Xia
Kai Sun
W. Kang
14
2
0
09 Mar 2022
A Trainable Approach to Zero-delay Smoothing Spline Interpolation
Emilio Ruiz-Moreno
Luis Miguel Lopez Ramos
B. Beferull-Lozano
11
4
0
07 Mar 2022
Risk Bounds of Multi-Pass SGD for Least Squares in the Interpolation Regime
Difan Zou
Jingfeng Wu
Vladimir Braverman
Quanquan Gu
Sham Kakade
19
5
0
07 Mar 2022
Previous
1
2
3
...
10
11
12
...
27
28
29
Next