Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,407 papers shown
Title
Stability and Generalization Analysis of Gradient Methods for Shallow Neural Networks
Yunwen Lei
Rong Jin
Yiming Ying
MLT
40
18
0
19 Sep 2022
On the Soft-Subnetwork for Few-shot Class Incremental Learning
Haeyong Kang
Jaehong Yoon
Sultan Rizky Hikmawan Madjid
Sung Ju Hwang
Chang D. Yoo
CLL
52
41
0
15 Sep 2022
Fast online ranking with fairness of exposure
Nicolas Usunier
Virginie Do
Elvis Dohmatob
32
18
0
13 Sep 2022
Convergence of Batch Updating Methods with Approximate Gradients and/or Noisy Measurements: Theory and Computational Results
Tadipatri Uday
M. Vidyasagar
28
0
0
12 Sep 2022
Model-free Subsampling Method Based on Uniform Designs
Mei Zhang
Yongdao Zhou
Zhengze Zhou
Aijun Zhang
11
14
0
08 Sep 2022
Solving Elliptic Problems with Singular Sources using Singularity Splitting Deep Ritz Method
Tianhao Hu
Bangti Jin
Zhi Zhou
31
6
0
07 Sep 2022
Cooperative coevolutionary Modified Differential Evolution with Distance-based Selection for Large-Scale Optimization Problems in noisy environments through an automatic Random Grouping
Rui Zhong
M. Munetomo
18
0
0
02 Sep 2022
Versatile Single-Loop Method for Gradient Estimator: First and Second Order Optimality, and its Application to Federated Learning
Kazusato Oko
Shunta Akiyama
Tomoya Murata
Taiji Suzuki
FedML
41
0
0
01 Sep 2022
Flexible Vertical Federated Learning with Heterogeneous Parties
Timothy Castiglia
Shiqiang Wang
S. Patterson
FedML
42
34
0
26 Aug 2022
A simplified convergence theory for Byzantine resilient stochastic gradient descent
Lindon Roberts
E. Smyth
31
3
0
25 Aug 2022
A Graphical Model for Fusing Diverse Microbiome Data
Mehmet Aktukmak
Haonan Zhu
M. Chevrette
Julia Nepper
S. Magesh
J. Handelsman
Alfred Hero
24
2
0
21 Aug 2022
Pandemic Control, Game Theory and Machine Learning
Yao Xuan
R. Balkin
Jiequn Han
Ruimeng Hu
Héctor D. Ceniceros
AI4CE
16
1
0
18 Aug 2022
Detection and Mitigation of Byzantine Attacks in Distributed Training
Konstantinos Konstantinidis
Namrata Vaswani
Aditya Ramamoorthy
AAML
34
0
0
17 Aug 2022
Exponential Concentration in Stochastic Approximation
K. Law
N. Walton
Shan Yang
21
0
0
15 Aug 2022
Adaptive Learning Rates for Faster Stochastic Gradient Methods
Samuel Horváth
Konstantin Mishchenko
Peter Richtárik
ODL
41
7
0
10 Aug 2022
Quantization enabled Privacy Protection in Decentralized Stochastic Optimization
Yongqiang Wang
Tamer Basar
32
44
0
07 Aug 2022
Fixed-Point Automatic Differentiation of Forward--Backward Splitting Algorithms for Partly Smooth Functions
Sheheryar Mehmood
Peter Ochs
37
3
0
05 Aug 2022
Adaptive Stochastic Gradient Descent for Fast and Communication-Efficient Distributed Learning
Serge Kas Hanna
Rawad Bitar
Parimal Parag
Venkateswara Dasari
S. E. Rouayheb
30
2
0
04 Aug 2022
SGEM: stochastic gradient with energy and momentum
Hailiang Liu
Xuping Tian
17
4
0
03 Aug 2022
An adjoint-free algorithm for conditional nonlinear optimal perturbations (CNOPs) via sampling
Bin Shi
Guodong Sun
15
5
0
01 Aug 2022
Analyzing Sharpness along GD Trajectory: Progressive Sharpening and Edge of Stability
Z. Li
Zixuan Wang
Jian Li
19
44
0
26 Jul 2022
Approximation Power of Deep Neural Networks: an explanatory mathematical survey
Mohammad Motamed
12
3
0
19 Jul 2022
Is Integer Arithmetic Enough for Deep Learning Training?
Alireza Ghaffari
Marzieh S. Tahaei
Mohammadreza Tayaranian
M. Asgharian
V. Nia
MQ
16
16
0
18 Jul 2022
On uniform-in-time diffusion approximation for stochastic gradient descent
Lei Li
Yuliang Wang
48
3
0
11 Jul 2022
Deep neural network based adaptive learning for switched systems
Junjie He
Zhihang Xu
Qifeng Liao
AI4CE
10
2
0
11 Jul 2022
Finite-time High-probability Bounds for Polyak-Ruppert Averaged Iterates of Linear Stochastic Approximation
Alain Durmus
Eric Moulines
A. Naumov
S. Samsonov
31
24
0
10 Jul 2022
Scalable K-FAC Training for Deep Neural Networks with Distributed Preconditioning
Lin Zhang
S. Shi
Wei Wang
Bo-wen Li
38
10
0
30 Jun 2022
Meta-Wrapper: Differentiable Wrapping Operator for User Interest Selection in CTR Prediction
Tianwei Cao
Qianqian Xu
Zhiyong Yang
Qingming Huang
36
7
0
28 Jun 2022
Supervised Learning with General Risk Functionals
Liu Leqi
Audrey Huang
Zachary Chase Lipton
Kamyar Azizzadenesheli
25
5
0
27 Jun 2022
On bounds for norms of reparameterized ReLU artificial neural network parameters: sums of fractional powers of the Lipschitz norm control the network parameter vector
Arnulf Jentzen
T. Kröger
30
0
0
27 Jun 2022
Theoretical analysis of Adam using hyperparameters close to one without Lipschitz smoothness
Hideaki Iiduka
25
5
0
27 Jun 2022
Statistical inference with implicit SGD: proximal Robbins-Monro vs. Polyak-Ruppert
Yoonhyung Lee
Sungdong Lee
Joong-Ho Won
FedML
OffRL
23
3
0
25 Jun 2022
Stochastic Langevin Differential Inclusions with Applications to Machine Learning
F. Difonzo
Vyacheslav Kungurtsev
Jakub Mareˇcek
26
2
0
23 Jun 2022
GACT: Activation Compressed Training for Generic Network Architectures
Xiaoxuan Liu
Lianmin Zheng
Dequan Wang
Yukuo Cen
Weize Chen
...
Zhiyuan Liu
Jie Tang
Joey Gonzalez
Michael W. Mahoney
Alvin Cheung
VLM
GNN
MQ
25
30
0
22 Jun 2022
On the Maximum Hessian Eigenvalue and Generalization
Simran Kaur
Jérémy E. Cohen
Zachary Chase Lipton
26
41
0
21 Jun 2022
A Single-Timescale Analysis For Stochastic Approximation With Multiple Coupled Sequences
Han Shen
Tianyi Chen
52
15
0
21 Jun 2022
A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates
Yann Fraboni
Richard Vidal
Laetitia Kameni
Marco Lorenzi
FedML
27
24
0
21 Jun 2022
Finding Optimal Policy for Queueing Models: New Parameterization
Trang H. Tran
Lam M. Nguyen
K. Scheinberg
OffRL
28
2
0
21 Jun 2022
Compressed-VFL: Communication-Efficient Learning with Vertically Partitioned Data
Timothy Castiglia
Anirban Das
Shiqiang Wang
S. Patterson
FedML
27
48
0
16 Jun 2022
Sharper Convergence Guarantees for Asynchronous SGD for Distributed and Federated Learning
Anastasia Koloskova
Sebastian U. Stich
Martin Jaggi
FedML
30
79
0
16 Jun 2022
Gradient Descent for Low-Rank Functions
Romain Cosson
Ali Jadbabaie
A. Makur
Amirhossein Reisizadeh
Devavrat Shah
33
3
0
16 Jun 2022
Adaptive Expert Models for Personalization in Federated Learning
Martin Isaksson
Edvin Listo Zec
R. Coster
D. Gillblad
vSarunas Girdzijauskas
FedML
22
5
0
15 Jun 2022
On the fast convergence of minibatch heavy ball momentum
Raghu Bollapragada
Tyler Chen
Rachel A. Ward
34
17
0
15 Jun 2022
Automatic Clipping: Differentially Private Deep Learning Made Easier and Stronger
Zhiqi Bu
Yu Wang
Sheng Zha
George Karypis
27
69
0
14 Jun 2022
Stability and Generalization of Stochastic Optimization with Nonconvex and Nonsmooth Problems
Yunwen Lei
11
16
0
14 Jun 2022
A Stochastic Proximal Method for Nonsmooth Regularized Finite Sum Optimization
Dounia Lakhmiri
D. Orban
Andrea Lodi
9
0
0
14 Jun 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
37
8
0
13 Jun 2022
Modeling the Machine Learning Multiverse
Samuel J. Bell
Onno P. Kampman
Jesse Dodge
Neil D. Lawrence
26
17
0
13 Jun 2022
Anchor Sampling for Federated Learning with Partial Client Participation
Feijie Wu
Song Guo
Zhihao Qu
Shiqi He
Ziming Liu
Jing Gao
FedML
36
12
0
13 Jun 2022
On the Convergence to a Global Solution of Shuffling-Type Gradient Algorithms
Lam M. Nguyen
Trang H. Tran
32
2
0
13 Jun 2022
Previous
1
2
3
...
9
10
11
...
27
28
29
Next