Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,407 papers shown
Title
MLPGradientFlow: going with the flow of multilayer perceptrons (and finding minima fast and accurately)
Johanni Brea
Flavio Martinelli
Berfin Simsek
W. Gerstner
31
3
0
25 Jan 2023
Deterministic Online Classification: Non-iteratively Reweighted Recursive Least-Squares for Binary Class Rebalancing
Se-In Jang
11
0
0
22 Jan 2023
A Stochastic Proximal Polyak Step Size
Fabian Schaipp
Robert Mansel Gower
M. Ulbrich
19
12
0
12 Jan 2023
Federated Learning under Heterogeneous and Correlated Client Availability
Angelo Rodio
Francescomaria Faticanti
Othmane Marfoq
Giovanni Neglia
Emilio Leonardi
FedML
18
27
0
11 Jan 2023
Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
Xiao-Tong Yuan
P. Li
36
2
0
09 Jan 2023
Federated Learning for Data Streams
Othmane Marfoq
Giovanni Neglia
Laetitia Kameni
Richard Vidal
FedML
37
12
0
04 Jan 2023
CC-FedAvg: Computationally Customized Federated Averaging
Hao Zhang
Tingting Wu
Siyao Cheng
Jie Liu
FedML
18
5
0
28 Dec 2022
Variance Reduction for Score Functions Using Optimal Baselines
Ronan L. Keane
H. Gao
21
0
0
27 Dec 2022
Deep Unfolding-based Weighted Averaging for Federated Learning in Heterogeneous Environments
Ayano Nakai-Kasai
T. Wadayama
FedML
27
0
0
23 Dec 2022
Gradient Descent-Type Methods: Background and Simple Unified Convergence Analysis
Quoc Tran-Dinh
Marten van Dijk
34
0
0
19 Dec 2022
Convergence Analysis for Training Stochastic Neural Networks via Stochastic Gradient Descent
Richard Archibald
F. Bao
Yanzhao Cao
Hui‐Jie Sun
52
2
0
17 Dec 2022
Scheduling and Aggregation Design for Asynchronous Federated Learning over Wireless Networks
Chung-Hsuan Hu
Zheng Chen
Erik G. Larsson
27
64
0
14 Dec 2022
Learning useful representations for shifting tasks and distributions
Jianyu Zhang
Léon Bottou
OOD
34
13
0
14 Dec 2022
Low-Variance Forward Gradients using Direct Feedback Alignment and Momentum
Florian Bacho
Dominique F. Chu
21
8
0
14 Dec 2022
Generalized Gradient Flows with Provable Fixed-Time Convergence and Fast Evasion of Non-Degenerate Saddle Points
Mayank Baranwal
Param Budhraja
V. Raj
A. Hota
33
2
0
07 Dec 2022
Distributed Stochastic Gradient Descent with Cost-Sensitive and Strategic Agents
Abdullah Basar Akbay
C. Tepedelenlioğlu
FedML
15
0
0
05 Dec 2022
Convergence of ease-controlled Random Reshuffling gradient Algorithms under Lipschitz smoothness
R. Seccia
Corrado Coppola
G. Liuzzi
L. Palagi
26
2
0
04 Dec 2022
Learning-Assisted Algorithm Unrolling for Online Optimization with Budget Constraints
Jianyi Yang
Shaolei Ren
20
2
0
03 Dec 2022
GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning
Shiqi He
Qifan Yan
Feijie Wu
Lanjun Wang
Mathias Lécuyer
Ivan Beschastnikh
FedML
42
7
0
03 Dec 2022
Fully Stochastic Trust-Region Sequential Quadratic Programming for Equality-Constrained Optimization Problems
Yuchen Fang
Sen Na
Michael W. Mahoney
Mladen Kolar
13
22
0
29 Nov 2022
Impact of Redundancy on Resilience in Distributed Optimization and Learning
Shuo Liu
Nirupam Gupta
Nitin H. Vaidya
34
2
0
16 Nov 2022
General Intelligence Requires Rethinking Exploration
Minqi Jiang
Tim Rocktaschel
Edward Grefenstette
LRM
29
18
0
15 Nov 2022
Adaptive Federated Minimax Optimization with Lower Complexities
Feihu Huang
Xinrui Wang
Junyi Li
Songcan Chen
FedML
13
5
0
14 Nov 2022
Stochastic Coded Federated Learning: Theoretical Analysis and Incentive Mechanism Design
Yuchang Sun
Jiawei Shao
Yuyi Mao
Songze Li
Jun Zhang
FedML
24
8
0
08 Nov 2022
Neural PDE Solvers for Irregular Domains
Biswajit Khara
Ethan Herron
Zhanhong Jiang
Aditya Balu
Chih-Hsuan Yang
...
Anushrut Jignasu
S. Sarkar
C. Hegde
A. Krishnamurthy
Baskar Ganapathysubramanian
AI4CE
24
7
0
07 Nov 2022
Accelerating Parallel Stochastic Gradient Descent via Non-blocking Mini-batches
Haoze He
Parijat Dube
6
3
0
02 Nov 2022
RCD-SGD: Resource-Constrained Distributed SGD in Heterogeneous Environment via Submodular Partitioning
Haoze He
Parijat Dube
15
1
0
02 Nov 2022
Convergence analysis of a quasi-Monte Carlo-based deep learning algorithm for solving partial differential equations
Fengjiang Fu
Xiaoqun Wang
29
2
0
28 Oct 2022
Preferential Subsampling for Stochastic Gradient Langevin Dynamics
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
27
0
0
28 Oct 2022
NeuralSearchX: Serving a Multi-billion-parameter Reranker for Multilingual Metasearch at a Low Cost
Thales Sales Almeida
Thiago Laitz
Joao Seródio
L. Bonifacio
R. Lotufo
Rodrigo Nogueira
22
4
0
26 Oct 2022
Decentralized Stochastic Bilevel Optimization with Improved per-Iteration Complexity
Xuxing Chen
Minhui Huang
Shiqian Ma
Krishnakumar Balasubramanian
27
25
0
23 Oct 2022
Mitigating Gradient Bias in Multi-objective Learning: A Provably Convergent Stochastic Approach
H. Fernando
Han Shen
Miao Liu
Subhajit Chaudhury
K. Murugesan
Tianyi Chen
36
8
0
23 Oct 2022
A note on diffusion limits for stochastic gradient descent
Alberto Lanconelli
Christopher S. A. Lauria
DiffM
22
1
0
20 Oct 2022
PAC-Bayesian Learning of Optimization Algorithms
Michael Sucker
Peter Ochs
27
4
0
20 Oct 2022
Block-wise Primal-dual Algorithms for Large-scale Doubly Penalized ANOVA Modeling
Penghui Fu
Z. Tan
21
5
0
20 Oct 2022
Sketching for First Order Method: Efficient Algorithm for Low-Bandwidth Channel and Vulnerability
Zhao Song
Yitan Wang
Zheng Yu
Licheng Zhang
FedML
23
28
0
15 Oct 2022
Distributed Distributionally Robust Optimization with Non-Convex Objectives
Yang Jiao
Kai Yang
Dongjin Song
29
11
0
14 Oct 2022
Joint control variate for faster black-box variational inference
Xi Wang
Tomas Geffner
Justin Domke
BDL
DRL
19
0
0
13 Oct 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
40
2
0
12 Oct 2022
Make Sharpness-Aware Minimization Stronger: A Sparsified Perturbation Approach
Peng Mi
Li Shen
Tianhe Ren
Yiyi Zhou
Xiaoshuai Sun
Rongrong Ji
Dacheng Tao
AAML
38
69
0
11 Oct 2022
Robust Graph Structure Learning via Multiple Statistical Tests
Yaohua Wang
Fangyi Zhang
Ming Lin
Senzhang Wang
Xiuyu Sun
Rong Jin
34
1
0
08 Oct 2022
Scaling up Stochastic Gradient Descent for Non-convex Optimisation
S. Mohamad
H. Alamri
A. Bouchachia
50
3
0
06 Oct 2022
Over-the-Air Federated Learning with Privacy Protection via Correlated Additive Perturbations
Jialing Liao
Zheng Chen
Erik G. Larsson
25
12
0
05 Oct 2022
Taming Fat-Tailed ("Heavier-Tailed'' with Potentially Infinite Variance) Noise in Federated Learning
Haibo Yang
Pei-Yuan Qiu
Jia Liu
FedML
35
12
0
03 Oct 2022
Stochastic optimization on matrices and a graphon McKean-Vlasov limit
Zaïd Harchaoui
Sewoong Oh
Soumik Pal
Raghav Somani
Raghavendra Tripathi
36
2
0
02 Oct 2022
Downlink Compression Improves TopK Sparsification
William Zou
H. Sterck
Jun Liu
21
0
0
30 Sep 2022
Benchmarking Learning Efficiency in Deep Reservoir Computing
Hugo Cisneros
Josef Sivic
Tomáš Mikolov
14
2
0
29 Sep 2022
FG-UAP: Feature-Gathering Universal Adversarial Perturbation
Zhixing Ye
Xinwen Cheng
X. Huang
AAML
74
10
0
27 Sep 2022
Communication-Efficient {Federated} Learning Using Censored Heavy Ball Descent
Yicheng Chen
Rick S. Blum
Brian M. Sadler
FedML
28
4
0
24 Sep 2022
Robust Collaborative Learning with Linear Gradient Overhead
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
John Stephan
FedML
14
15
0
22 Sep 2022
Previous
1
2
3
...
8
9
10
...
27
28
29
Next