Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
v1
v2
v3 (latest)
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 867 papers shown
Title
Achieving Linear Speedup with Partial Worker Participation in Non-IID Federated Learning
Haibo Yang
Minghong Fang
Jia Liu
FedML
105
263
0
27 Jan 2021
SGD-Net: Efficient Model-Based Deep Learning with Theoretical Guarantees
Jiaming Liu
Yu Sun
Weijie Gan
Xiaojian Xu
B. Wohlberg
Ulugbek S. Kamilov
FedML
MedIm
91
31
0
22 Jan 2021
Approximate Byzantine Fault-Tolerance in Distributed Optimization
Shuo Liu
Nirupam Gupta
Nitin H. Vaidya
84
43
0
22 Jan 2021
Gravity Optimizer: a Kinematic Approach on Optimization in Deep Learning
Dariush Bahrami
Sadegh Pouriyan Zadeh
ODL
44
5
0
22 Jan 2021
Linear Regression with Distributed Learning: A Generalization Error Perspective
Martin Hellkvist
Ayça Özçelikkale
Anders Ahlén
FedML
45
10
0
22 Jan 2021
Clairvoyant Prefetching for Distributed Machine Learning I/O
Nikoli Dryden
Roman Böhringer
Tal Ben-Nun
Torsten Hoefler
79
58
0
21 Jan 2021
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
92
26
0
04 Jan 2021
CADA: Communication-Adaptive Distributed Adam
Tianyi Chen
Ziye Guo
Yuejiao Sun
W. Yin
ODL
49
24
0
31 Dec 2020
Image-Based Jet Analysis
Michael Kagan
73
7
0
17 Dec 2020
Are we Forgetting about Compositional Optimisers in Bayesian Optimisation?
Antoine Grosnit
Alexander I. Cowen-Rivers
Rasul Tutunov
Ryan-Rhys Griffiths
Jun Wang
Haitham Bou-Ammar
105
14
0
15 Dec 2020
Concept Drift Monitoring and Diagnostics of Supervised Learning Models via Score Vectors
Kungang Zhang
A. Bui
D. Apley
48
10
0
12 Dec 2020
Structured learning of rigid-body dynamics: A survey and unified view from a robotics perspective
A. R. Geist
Sebastian Trimpe
AI4CE
90
17
0
11 Dec 2020
Recent Theoretical Advances in Non-Convex Optimization
Marina Danilova
Pavel Dvurechensky
Alexander Gasnikov
Eduard A. Gorbunov
Sergey Guminov
Dmitry Kamzolov
Innokentiy Shibaev
129
79
0
11 Dec 2020
Stochastic Damped L-BFGS with Controlled Norm of the Hessian Approximation
Sanae Lotfi
Tiphaine Bonniot de Ruisselet
D. Orban
Andrea Lodi
ODL
26
6
0
10 Dec 2020
Asymptotic study of stochastic adaptive algorithm in non-convex landscape
S. Gadat
Ioana Gavra
82
18
0
10 Dec 2020
DONE: Distributed Approximate Newton-type Method for Federated Edge Learning
Canh T. Dinh
N. H. Tran
Tuan Dung Nguyen
Wei Bao
A. R. Balef
B. Zhou
Albert Y. Zomaya
FedML
110
16
0
10 Dec 2020
Block majorization-minimization with diminishing radius for constrained nonconvex optimization
Hanbaek Lyu
Yuchen Li
70
10
0
07 Dec 2020
When Do Curricula Work?
Xiaoxia Wu
Ethan Dyer
Behnam Neyshabur
96
118
0
05 Dec 2020
Learning with risks based on M-location
Matthew J. Holland
67
10
0
04 Dec 2020
Stochastic Gradient Descent with Nonlinear Conjugate Gradient-Style Adaptive Momentum
Bao Wang
Qiang Ye
ODL
99
14
0
03 Dec 2020
A Hypergradient Approach to Robust Regression without Correspondence
Yujia Xie
Yongyi Mao
Simiao Zuo
Hongteng Xu
X. Ye
T. Zhao
H. Zha
107
15
0
30 Nov 2020
Sequential convergence of AdaGrad algorithm for smooth convex optimization
Cheik Traoré
Edouard Pauwels
51
22
0
24 Nov 2020
SMG: A Shuffling Gradient-Based Method with Momentum
Trang H. Tran
Lam M. Nguyen
Quoc Tran-Dinh
78
22
0
24 Nov 2020
On the Convergence of Continuous Constrained Optimization for Structure Learning
Ignavier Ng
Sébastien Lachapelle
Nan Rosemary Ke
Simon Lacoste-Julien
Kun Zhang
105
38
0
23 Nov 2020
Continuous-Time Convergence Rates in Potential and Monotone Games
Bolin Gao
Lacra Pavel
22
8
0
21 Nov 2020
On the asymptotic rate of convergence of Stochastic Newton algorithms and their Weighted Averaged versions
Claire Boyer
Antoine Godichon-Baggioni
68
19
0
19 Nov 2020
Accelerating Distributed SGD for Linear Regression using Iterative Pre-Conditioning
Kushal Chakrabarti
Nirupam Gupta
Nikhil Chopra
74
2
0
15 Nov 2020
Convergence Properties of Stochastic Hypergradients
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
112
26
0
13 Nov 2020
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
86
6
0
09 Nov 2020
Stochastic Approximation for High-frequency Observations in Data Assimilation
Shushu Zhang
V. Patel
44
1
0
05 Nov 2020
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
Youssef Mroueh
Truyen V. Nguyen
70
25
0
04 Nov 2020
Quantized Variational Inference
Amir Dib
50
1
0
04 Nov 2020
Nonlinear Two-Time-Scale Stochastic Approximation: Convergence and Finite-Time Performance
Thinh T. Doan
99
46
0
03 Nov 2020
Asynchronous Parallel Stochastic Quasi-Newton Methods
Qianqian Tong
Guannan Liang
Xingyu Cai
Chunjiang Zhu
J. Bi
ODL
94
9
0
02 Nov 2020
Adversarial Attacks on Optimization based Planners
Sai H. Vemprala
Ashish Kapoor
AAML
131
12
0
30 Oct 2020
Hogwild! over Distributed Local Data Sets with Linearly Increasing Mini-Batch Sizes
Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Quoc Tran-Dinh
Phuong Ha Nguyen
FedML
116
10
0
27 Oct 2020
Optimal Client Sampling for Federated Learning
Jiajun He
Samuel Horváth
Peter Richtárik
FedML
93
201
0
26 Oct 2020
Demystifying Why Local Aggregation Helps: Convergence Analysis of Hierarchical SGD
Jiayi Wang
Shiqiang Wang
Rong-Rong Chen
Mingyue Ji
FedML
108
55
0
24 Oct 2020
Sample Efficient Reinforcement Learning with REINFORCE
Junzi Zhang
Jongho Kim
Brendan O'Donoghue
Stephen P. Boyd
118
113
0
22 Oct 2020
How Data Augmentation affects Optimization for Linear Regression
Boris Hanin
Yi Sun
86
16
0
21 Oct 2020
Progressive Batching for Efficient Non-linear Least Squares
Huu Le
Christopher Zach
E. Rosten
Oliver J. Woodford
54
3
0
21 Oct 2020
Dual Averaging is Surprisingly Effective for Deep Learning Optimization
Samy Jelassi
Aaron Defazio
61
5
0
20 Oct 2020
Bi-level Score Matching for Learning Energy-based Latent Variable Models
Fan Bao
Chongxuan Li
Kun Xu
Hang Su
Jun Zhu
Bo Zhang
76
14
0
15 Oct 2020
FedAT: A High-Performance and Communication-Efficient Federated Learning System with Asynchronous Tiers
Zheng Chai
Yujing Chen
Ali Anwar
Liang Zhao
Yue Cheng
Huzefa Rangwala
FedML
82
124
0
12 Oct 2020
AEGD: Adaptive Gradient Descent with Energy
Hailiang Liu
Xuping Tian
ODL
55
11
0
10 Oct 2020
A Low Complexity Decentralized Neural Net with Centralized Equivalence using Layer-wise Learning
Xinyue Liang
Alireza M. Javid
Mikael Skoglund
Saikat Chatterjee
FedML
60
4
0
29 Sep 2020
Normalization Techniques in Training DNNs: Methodology, Analysis and Application
Lei Huang
Jie Qin
Yi Zhou
Fan Zhu
Li Liu
Ling Shao
AI4CE
176
275
0
27 Sep 2020
An optimization problem for continuous submodular functions
L. Csirmaz
69
2
0
26 Sep 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
197
80
0
17 Sep 2020
Learning joint segmentation of tissues and brain lesions from task-specific hetero-modal domain-shifted datasets
Reuben Dorent
Thomas C Booth
Wenqi Li
Carole H. Sudre
S. Kafiabadi
M. Jorge Cardoso
Sebastien Ourselin
Tom Vercauteren
48
25
0
08 Sep 2020
Previous
1
2
3
...
8
9
10
...
16
17
18
Next