ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.04699
16
11

Byzantine Fault-Tolerant Distributed Machine Learning Using Stochastic Gradient Descent (SGD) and Norm-Based Comparative Gradient Elimination (CGE)

11 August 2020
Nirupam Gupta
Shuo Liu
Nitin H. Vaidya
    FedML
ArXivPDFHTML
Abstract

This paper considers the Byzantine fault-tolerance problem in distributed stochastic gradient descent (D-SGD) method - a popular algorithm for distributed multi-agent machine learning. In this problem, each agent samples data points independently from a certain data-generating distribution. In the fault-free case, the D-SGD method allows all the agents to learn a mathematical model best fitting the data collectively sampled by all agents. We consider the case when a fraction of agents may be Byzantine faulty. Such faulty agents may not follow a prescribed algorithm correctly, and may render traditional D-SGD method ineffective by sharing arbitrary incorrect stochastic gradients. We propose a norm-based gradient-filter, named comparative gradient elimination (CGE), that robustifies the D-SGD method against Byzantine agents. We show that the CGE gradient-filter guarantees fault-tolerance against a bounded fraction of Byzantine agents under standard stochastic assumptions, and is computationally simpler compared to many existing gradient-filters such as multi-KRUM, geometric median-of-means, and the spectral filters. We empirically show, by simulating distributed learning on neural networks, that the fault-tolerance of CGE is comparable to that of existing gradient-filters. We also empirically show that exponential averaging of stochastic gradients improves the fault-tolerance of a generic gradient-filter.

View on arXiv
Comments on this paper