Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.07277
Cited By
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
24 May 2016
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples"
50 / 360 papers shown
Title
Minimizing Maximum Model Discrepancy for Transferable Black-box Targeted Attacks
Anqi Zhao
Tong Chu
Yahao Liu
Wen Li
Jingjing Li
Lixin Duan
AAML
28
16
0
18 Dec 2022
A Survey on Reinforcement Learning Security with Application to Autonomous Driving
Ambra Demontis
Maura Pintor
Christian Scano
Kathrin Grosse
Hsiao-Ying Lin
Chengfang Fang
Battista Biggio
Fabio Roli
AAML
49
4
0
12 Dec 2022
Carpet-bombing patch: attacking a deep network without usual requirements
Pol Labarbarie
Adrien Chan-Hon-Tong
Stéphane Herbin
Milad Leyli-Abadi
AAML
32
1
0
12 Dec 2022
General Adversarial Defense Against Black-box Attacks via Pixel Level and Feature Level Distribution Alignments
Xiaogang Xu
Hengshuang Zhao
Philip Torr
Jiaya Jia
AAML
37
2
0
11 Dec 2022
Leveraging Unlabeled Data to Track Memorization
Mahsa Forouzesh
Hanie Sedghi
Patrick Thiran
NoLa
TDI
39
4
0
08 Dec 2022
Enhancing Quantum Adversarial Robustness by Randomized Encodings
Weiyuan Gong
D. Yuan
Weikang Li
D. Deng
AAML
26
19
0
05 Dec 2022
Interpretations Cannot Be Trusted: Stealthy and Effective Adversarial Perturbations against Interpretable Deep Learning
Eldor Abdukhamidov
Mohammed Abuhamad
Simon S. Woo
Eric Chan-Tin
Tamer Abuhmed
AAML
36
9
0
29 Nov 2022
Game Theoretic Mixed Experts for Combinational Adversarial Machine Learning
Ethan Rathbun
Kaleel Mahmood
Sohaib Ahmad
Caiwen Ding
Marten van Dijk
AAML
24
4
0
26 Nov 2022
Adversarial Attacks are a Surprisingly Strong Baseline for Poisoning Few-Shot Meta-Learners
E. T. Oldewage
J. Bronskill
Richard Turner
27
3
0
23 Nov 2022
Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack
Yunfeng Diao
He Wang
Tianjia Shao
Yong-Liang Yang
Kun Zhou
David C. Hogg
Meng Wang
AAML
45
7
0
21 Nov 2022
Butterfly Effect Attack: Tiny and Seemingly Unrelated Perturbations for Object Detection
N. Doan
Arda Yüksel
Chih-Hong Cheng
AAML
21
1
0
14 Nov 2022
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
Nikolaos Tsilivis
Julia Kempe
AAML
52
18
0
11 Oct 2022
On the Robustness of Deep Clustering Models: Adversarial Attacks and Defenses
Anshuman Chhabra
Ashwin Sekhari
P. Mohapatra
OOD
AAML
45
8
0
04 Oct 2022
Watch What You Pretrain For: Targeted, Transferable Adversarial Examples on Self-Supervised Speech Recognition models
R. Olivier
H. Abdullah
Bhiksha Raj
AAML
26
1
0
17 Sep 2022
On the Transferability of Adversarial Examples between Encrypted Models
Miki Tanaka
Isao Echizen
Hitoshi Kiya
SILM
39
4
0
07 Sep 2022
Adversarial Detection: Attacking Object Detection in Real Time
Han-Ching Wu
Syed Yunas
Sareh Rowlands
Wenjie Ruan
Johan Wahlstrom
AAML
33
4
0
05 Sep 2022
Trace and Detect Adversarial Attacks on CNNs using Feature Response Maps
Mohammadreza Amirian
Friedhelm Schwenker
Thilo Stadelmann
AAML
27
16
0
24 Aug 2022
Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry
M. Penrod
Harrison Termotto
Varshini Reddy
Jiayu Yao
Finale Doshi-Velez
Weiwei Pan
AAML
OOD
43
1
0
02 Aug 2022
LGV: Boosting Adversarial Example Transferability from Large Geometric Vicinity
Martin Gubri
Maxime Cordy
Mike Papadakis
Yves Le Traon
Koushik Sen
AAML
35
51
0
26 Jul 2022
Decorrelative Network Architecture for Robust Electrocardiogram Classification
Christopher Wiedeman
Ge Wang
OOD
13
2
0
19 Jul 2022
Adversarial Pixel Restoration as a Pretext Task for Transferable Perturbations
H. Malik
Shahina Kunhimon
Muzammal Naseer
Salman Khan
Fahad Shahbaz Khan
AAML
33
8
0
18 Jul 2022
Watermark Vaccine: Adversarial Attacks to Prevent Watermark Removal
Xinwei Liu
Jian Liu
Yang Bai
Jindong Gu
Tao Chen
Xiaojun Jia
Xiaochun Cao
AAML
WIGM
33
26
0
17 Jul 2022
Provably Adversarially Robust Nearest Prototype Classifiers
Václav Voráček
Matthias Hein
AAML
25
11
0
14 Jul 2022
Machine Learning Security in Industry: A Quantitative Survey
Kathrin Grosse
L. Bieringer
Tarek R. Besold
Battista Biggio
Katharina Krombholz
40
32
0
11 Jul 2022
Statistical Detection of Adversarial examples in Blockchain-based Federated Forest In-vehicle Network Intrusion Detection Systems
I. Aliyu
Sélinde Van Engelenburg
Muhammed Muazu
Jinsul Kim
C. Lim
AAML
43
14
0
11 Jul 2022
Threat Assessment in Machine Learning based Systems
L. Tidjon
Foutse Khomh
27
17
0
30 Jun 2022
Transferable Graph Backdoor Attack
Shuiqiao Yang
Bao Gia Doan
Paul Montague
O. Vel
Tamas Abraham
S. Çamtepe
Damith C. Ranasinghe
S. Kanhere
AAML
49
36
0
21 Jun 2022
I Know What You Trained Last Summer: A Survey on Stealing Machine Learning Models and Defences
Daryna Oliynyk
Rudolf Mayer
Andreas Rauber
57
106
0
16 Jun 2022
ReFace: Real-time Adversarial Attacks on Face Recognition Systems
Shehzeen Samarah Hussain
Todd P. Huster
Chris Mesterharm
Paarth Neekhara
Kevin R. An
Malhar Jere
Harshvardhan Digvijay Sikka
F. Koushanfar
AAML
26
6
0
09 Jun 2022
Pruning has a disparate impact on model accuracy
Cuong Tran
Ferdinando Fioretto
Jung-Eun Kim
Rakshit Naidu
45
38
0
26 May 2022
An Analytic Framework for Robust Training of Artificial Neural Networks
R. Barati
Reza Safabakhsh
Mohammad Rahmati
AAML
19
0
0
26 May 2022
Transferable Adversarial Attack based on Integrated Gradients
Y. Huang
A. Kong
AAML
40
50
0
26 May 2022
Learn2Weight: Parameter Adaptation against Similar-domain Adversarial Attacks
Siddhartha Datta
AAML
38
4
0
15 May 2022
Do You Think You Can Hold Me? The Real Challenge of Problem-Space Evasion Attacks
Harel Berger
A. Dvir
Chen Hajaj
Rony Ronen
AAML
29
3
0
09 May 2022
A Simple Yet Efficient Method for Adversarial Word-Substitute Attack
Tianle Li
Yi Yang
AAML
32
0
0
07 May 2022
Detecting Backdoor Poisoning Attacks on Deep Neural Networks by Heatmap Clustering
Lukas Schulth
Christian Berghoff
Matthias Neu
AAML
25
5
0
27 Apr 2022
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
54
72
0
26 Mar 2022
Improving the Transferability of Targeted Adversarial Examples through Object-Based Diverse Input
Junyoung Byun
Seungju Cho
Myung-Joon Kwon
Heeseon Kim
Changick Kim
AAML
DiffM
29
68
0
17 Mar 2022
One Parameter Defense -- Defending against Data Inference Attacks via Differential Privacy
Dayong Ye
Sheng Shen
Tianqing Zhu
B. Liu
Wanlei Zhou
MIACV
16
62
0
13 Mar 2022
Practical No-box Adversarial Attacks with Training-free Hybrid Image Transformation
Qilong Zhang
Chaoning Zhang
Chaoning Zhang
Chaoqun Li
Xuanhan Wang
Jingkuan Song
Lianli Gao
AAML
41
21
0
09 Mar 2022
Art-Attack: Black-Box Adversarial Attack via Evolutionary Art
P. Williams
Ke Li
AAML
27
2
0
07 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
34
13
0
26 Feb 2022
StratDef: Strategic Defense Against Adversarial Attacks in ML-based Malware Detection
Aqib Rashid
Jose Such
AAML
24
6
0
15 Feb 2022
Holistic Adversarial Robustness of Deep Learning Models
Pin-Yu Chen
Sijia Liu
AAML
54
16
0
15 Feb 2022
Adversarial Attacks and Defense Methods for Power Quality Recognition
Jiwei Tian
Buhong Wang
Jing Li
Zhen Wang
Mete Ozay
AAML
28
0
0
11 Feb 2022
Red Teaming Language Models with Language Models
Ethan Perez
Saffron Huang
Francis Song
Trevor Cai
Roman Ring
John Aslanides
Amelia Glaese
Nat McAleese
G. Irving
AAML
13
613
0
07 Feb 2022
Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains
Qilong Zhang
Xiaodan Li
YueFeng Chen
Jingkuan Song
Lianli Gao
Yuan He
Hui Xue
AAML
67
64
0
27 Jan 2022
Security for Machine Learning-based Software Systems: a survey of threats, practices and challenges
Huaming Chen
Muhammad Ali Babar
AAML
42
22
0
12 Jan 2022
On Distinctive Properties of Universal Perturbations
Sung Min Park
K. Wei
Kai Y. Xiao
Jungshian Li
A. Madry
AAML
30
2
0
31 Dec 2021
Closer Look at the Transferability of Adversarial Examples: How They Fool Different Models Differently
Futa Waseda
Sosuke Nishikawa
Trung-Nghia Le
H. Nguyen
Isao Echizen
SILM
36
35
0
29 Dec 2021
Previous
1
2
3
4
5
6
7
8
Next