40
2

Art-Attack: Black-Box Adversarial Attack via Evolutionary Art

Abstract

Deep neural networks (DNNs) have achieved state-of-the-art performance in many tasks but have shown extreme vulnerabilities to attacks generated by adversarial examples. Many works go with a white-box attack that assumes total access to the targeted model including its architecture and gradients. A more realistic assumption is the black-box scenario where an attacker only has access to the targeted model by querying some input and observing its predicted class probabilities. Different from most prevalent black-box attacks that make use of substitute models or gradient estimation, this paper proposes a gradient-free attack by using a concept of evolutionary art to generate adversarial examples that iteratively evolves a set of overlapping transparent shapes. To evaluate the effectiveness of our proposed method, we attack three state-of-the-art image classification models trained on the CIFAR-10 dataset in a targeted manner. We conduct a parameter study outlining the impact the number and type of shapes have on the proposed attack's performance. In comparison to state-of-the-art black-box attacks, our attack is more effective at generating adversarial examples and achieves a higher attack success rate on all three baseline models.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.