Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.07277
Cited By
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
24 May 2016
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples"
10 / 360 papers shown
Title
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
Briland Hitaj
G. Ateniese
Fernando Perez-Cruz
FedML
58
1,380
0
24 Feb 2017
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
39
709
0
21 Feb 2017
Dense Associative Memory is Robust to Adversarial Inputs
Dmitry Krotov
J. Hopfield
AAML
31
111
0
04 Jan 2017
Simple Black-Box Adversarial Perturbations for Deep Networks
Nina Narodytska
S. Kasiviswanathan
AAML
27
237
0
19 Dec 2016
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
28
1,723
0
08 Nov 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
303
3,115
0
04 Nov 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
86
8,465
0
16 Aug 2016
Early Methods for Detecting Adversarial Images
Dan Hendrycks
Kevin Gimpel
AAML
35
235
0
01 Aug 2016
On the Effectiveness of Defensive Distillation
Nicolas Papernot
Patrick McDaniel
AAML
19
64
0
18 Jul 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
335
5,849
0
08 Jul 2016
Previous
1
2
3
4
5
6
7
8