Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.07277
Cited By
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
24 May 2016
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples"
50 / 360 papers shown
Title
Spanning Attack: Reinforce Black-box Attacks with Unlabeled Data
Lu Wang
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
Yuan Jiang
AAML
35
12
0
11 May 2020
Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness
Pu Zhao
Pin-Yu Chen
Payel Das
Karthikeyan N. Ramamurthy
Xue Lin
AAML
64
185
0
30 Apr 2020
Imitation Attacks and Defenses for Black-box Machine Translation Systems
Eric Wallace
Mitchell Stern
D. Song
AAML
27
120
0
30 Apr 2020
Transferable Perturbations of Deep Feature Distributions
Nathan Inkawhich
Kevin J Liang
Lawrence Carin
Yiran Chen
AAML
30
84
0
27 Apr 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Xia Hu
AAML
31
8
0
23 Apr 2020
PatchAttack: A Black-box Texture-based Attack with Reinforcement Learning
Chenglin Yang
Adam Kortylewski
Cihang Xie
Yinzhi Cao
Alan Yuille
AAML
45
109
0
12 Apr 2020
PoisHygiene: Detecting and Mitigating Poisoning Attacks in Neural Networks
Junfeng Guo
Zelun Kong
Cong Liu
AAML
32
1
0
24 Mar 2020
Adversarial Perturbations Fool Deepfake Detectors
Apurva Gandhi
Shomik Jain
AAML
16
103
0
24 Mar 2020
Face-Off: Adversarial Face Obfuscation
Varun Chandrasekaran
Chuhan Gao
Brian Tang
Kassem Fawaz
S. Jha
Suman Banerjee
PICV
27
44
0
19 Mar 2020
Diversity can be Transferred: Output Diversification for White- and Black-box Attacks
Y. Tashiro
Yang Song
Stefano Ermon
AAML
14
13
0
15 Mar 2020
MAB-Malware: A Reinforcement Learning Framework for Attacking Static Malware Classifiers
Wei Song
Xuezixiang Li
Sadia Afroz
D. Garg
Dmitry Kuznetsov
Heng Yin
AAML
53
27
0
06 Mar 2020
Towards Practical Lottery Ticket Hypothesis for Adversarial Training
Bai Li
Shiqi Wang
Yunhan Jia
Yantao Lu
Zhenyu Zhong
Lawrence Carin
Suman Jana
AAML
31
14
0
06 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
72
63
0
02 Mar 2020
On Isometry Robustness of Deep 3D Point Cloud Models under Adversarial Attacks
Yue Zhao
Yuwei Wu
Caihua Chen
A. Lim
3DPC
16
70
0
27 Feb 2020
Entangled Watermarks as a Defense against Model Extraction
Hengrui Jia
Christopher A. Choquette-Choo
Varun Chandrasekaran
Nicolas Papernot
WaLM
AAML
13
218
0
27 Feb 2020
Adversarial Ranking Attack and Defense
Mo Zhou
Zhenxing Niu
Le Wang
Qilin Zhang
G. Hua
36
38
0
26 Feb 2020
Real-Time Detectors for Digital and Physical Adversarial Inputs to Perception Systems
Y. Kantaros
Taylor J. Carpenter
Kaustubh Sridhar
Yahan Yang
Insup Lee
James Weimer
AAML
17
12
0
23 Feb 2020
Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition
Ziwen He
Wei Wang
Jing Dong
Tieniu Tan
AAML
22
23
0
22 Feb 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
A. Madry
AAML
109
823
0
19 Feb 2020
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
29
485
0
12 Feb 2020
Attacking Optical Character Recognition (OCR) Systems with Adversarial Watermarks
Lu Chen
Wenyuan Xu
AAML
24
21
0
08 Feb 2020
Over-the-Air Adversarial Attacks on Deep Learning Based Modulation Classifier over Wireless Channels
Brian Kim
Y. Sagduyu
Kemal Davaslioglu
T. Erpek
S. Ulukus
AAML
48
68
0
05 Feb 2020
Minimax Defense against Gradient-based Adversarial Attacks
Blerta Lindqvist
R. Izmailov
AAML
19
0
0
04 Feb 2020
Adversarial Machine Learning -- Industry Perspectives
Ramnath Kumar
Magnus Nyström
J. Lambert
Andrew Marshall
Mario Goertzel
Andi Comissoneru
Matt Swann
Sharon Xia
AAML
SILM
29
232
0
04 Feb 2020
Towards Sharper First-Order Adversary with Quantized Gradients
Zhuanghua Liu
Ivor W. Tsang
AAML
22
0
0
01 Feb 2020
GhostImage: Remote Perception Attacks against Camera-based Image Classification Systems
Yanmao Man
Ming Li
Ryan M. Gerdes
AAML
22
8
0
21 Jan 2020
Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet
Sizhe Chen
Zhengbao He
Chengjin Sun
Jie Yang
Xiaolin Huang
AAML
31
104
0
16 Jan 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
24
108
0
27 Dec 2019
Label-Consistent Backdoor Attacks
Alexander Turner
Dimitris Tsipras
A. Madry
AAML
11
383
0
05 Dec 2019
Deep Neural Network Fingerprinting by Conferrable Adversarial Examples
Nils Lukas
Yuxuan Zhang
Florian Kerschbaum
MLAU
FedML
AAML
39
145
0
02 Dec 2019
DeepSmartFuzzer: Reward Guided Test Generation For Deep Learning
Samet Demir
Hasan Ferit Eniser
A. Sen
AAML
11
28
0
24 Nov 2019
Enhancing Cross-task Black-Box Transferability of Adversarial Examples with Dispersion Reduction
Yantao Lu
Yunhan Jia
Jianyu Wang
Bai Li
Weiheng Chai
Lawrence Carin
Senem Velipasalar
AAML
24
81
0
22 Nov 2019
Defective Convolutional Networks
Tiange Luo
Tianle Cai
Mengxiao Zhang
Siyu Chen
Di He
Liwei Wang
AAML
35
3
0
19 Nov 2019
Privacy Leakage Avoidance with Switching Ensembles
R. Izmailov
Peter Lin
Chris Mesterharm
S. Basu
25
2
0
18 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
21
104
0
13 Nov 2019
Patch augmentation: Towards efficient decision boundaries for neural networks
Marcus D. Bloice
P. Roth
Andreas Holzinger
AAML
18
2
0
08 Nov 2019
White-Box Target Attack for EEG-Based BCI Regression Problems
Lubin Meng
Chin-Teng Lin
T. Jung
Dongrui Wu
AAML
31
42
0
07 Nov 2019
The Threat of Adversarial Attacks on Machine Learning in Network Security -- A Survey
Olakunle Ibitoye
Rana Abou-Khamis
Mohamed el Shehaby
Ashraf Matrawy
M. O. Shafiq
AAML
39
68
0
06 Nov 2019
Towards Robust and Stable Deep Learning Algorithms for Forward Backward Stochastic Differential Equations
Batuhan Güler
Alexis Laignelet
P. Parpas
OOD
21
16
0
25 Oct 2019
Effectiveness of random deep feature selection for securing image manipulation detectors against adversarial examples
Mauro Barni
Ehsan Nowroozi
B. Tondi
Bowen Zhang
AAML
16
17
0
25 Oct 2019
Absum: Simple Regularization Method for Reducing Structural Sensitivity of Convolutional Neural Networks
Sekitoshi Kanai
Yasutoshi Ida
Yasuhiro Fujiwara
Masanori Yamada
S. Adachi
AAML
23
1
0
19 Sep 2019
Metric Learning for Adversarial Robustness
Chengzhi Mao
Ziyuan Zhong
Junfeng Yang
Carl Vondrick
Baishakhi Ray
OOD
27
184
0
03 Sep 2019
advPattern: Physical-World Attacks on Deep Person Re-Identification via Adversarially Transformable Patterns
Zhibo Wang
Siyan Zheng
Mengkai Song
Qian Wang
Alireza Rahimpour
Hairong Qi
AAML
OOD
19
59
0
25 Aug 2019
Denoising and Verification Cross-Layer Ensemble Against Black-box Adversarial Attacks
Ka-Ho Chow
Wenqi Wei
Yanzhao Wu
Ling Liu
AAML
25
15
0
21 Aug 2019
DAPAS : Denoising Autoencoder to Prevent Adversarial attack in Semantic Segmentation
Seungju Cho
Tae Joon Jun
Byungsoo Oh
Daeyoung Kim
27
31
0
14 Aug 2019
BlurNet: Defense by Filtering the Feature Maps
Ravi Raju
Mikko H. Lipasti
AAML
42
15
0
06 Aug 2019
Imperio: Robust Over-the-Air Adversarial Examples for Automatic Speech Recognition Systems
Lea Schonherr
Thorsten Eisenhofer
Steffen Zeiler
Thorsten Holz
D. Kolossa
AAML
54
63
0
05 Aug 2019
On the Design of Black-box Adversarial Examples by Leveraging Gradient-free Optimization and Operator Splitting Method
Pu Zhao
Sijia Liu
Pin-Yu Chen
Nghia Hoang
Kaidi Xu
B. Kailkhura
Xue Lin
AAML
32
54
0
26 Jul 2019
Prediction Poisoning: Towards Defenses Against DNN Model Stealing Attacks
Tribhuvanesh Orekondy
Bernt Schiele
Mario Fritz
AAML
19
164
0
26 Jun 2019
Quantitative Verification of Neural Networks And its Security Applications
Teodora Baluta
Shiqi Shen
Shweta Shinde
Kuldeep S. Meel
P. Saxena
AAML
24
104
0
25 Jun 2019
Previous
1
2
3
4
5
6
7
8
Next