ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.02997
44
4

On the Transferability of Adversarial Examples between Encrypted Models

7 September 2022
Miki Tanaka
Isao Echizen
Hitoshi Kiya
    SILM
ArXivPDFHTML
Abstract

Deep neural networks (DNNs) are well known to be vulnerable to adversarial examples (AEs). In addition, AEs have adversarial transferability, namely, AEs generated for a source model fool other (target) models. In this paper, we investigate the transferability of models encrypted for adversarially robust defense for the first time. To objectively verify the property of transferability, the robustness of models is evaluated by using a benchmark attack method, called AutoAttack. In an image-classification experiment, the use of encrypted models is confirmed not only to be robust against AEs but to also reduce the influence of AEs in terms of the transferability of models.

View on arXiv
Comments on this paper