ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.07201
39
16

Holistic Adversarial Robustness of Deep Learning Models

15 February 2022
Pin-Yu Chen
Sijia Liu
    AAML
ArXivPDFHTML
Abstract

Adversarial robustness studies the worst-case performance of a machine learning model to ensure safety and reliability. With the proliferation of deep-learning-based technology, the potential risks associated with model development and deployment can be amplified and become dreadful vulnerabilities. This paper provides a comprehensive overview of research topics and foundational principles of research methods for adversarial robustness of deep learning models, including attacks, defenses, verification, and novel applications.

View on arXiv
Comments on this paper