Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.07277
Cited By
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
24 May 2016
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples"
50 / 360 papers shown
Title
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural Networks against Adversarial Malware Samples
Deqiang Li
Ramesh Baral
Tao Li
Han Wang
Qianmu Li
Shouhuai Xu
AAML
28
21
0
18 Sep 2018
On the Structural Sensitivity of Deep Convolutional Networks to the Directions of Fourier Basis Functions
Yusuke Tsuzuku
Issei Sato
AAML
24
62
0
11 Sep 2018
Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks
Ambra Demontis
Marco Melis
Maura Pintor
Matthew Jagielski
Battista Biggio
Alina Oprea
Cristina Nita-Rotaru
Fabio Roli
SILM
AAML
19
11
0
08 Sep 2018
Adversarial Reprogramming of Text Classification Neural Networks
Paarth Neekhara
Shehzeen Samarah Hussain
Shlomo Dubnov
F. Koushanfar
AAML
SILM
29
9
0
06 Sep 2018
Adversarial Attacks Against Automatic Speech Recognition Systems via Psychoacoustic Hiding
Lea Schonherr
Katharina Kohls
Steffen Zeiler
Thorsten Holz
D. Kolossa
AAML
33
287
0
16 Aug 2018
Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the Robustness of 18 Deep Image Classification Models
D. Su
Huan Zhang
Hongge Chen
Jinfeng Yi
Pin-Yu Chen
Yupeng Gao
VLM
40
389
0
05 Aug 2018
Enabling Trust in Deep Learning Models: A Digital Forensics Case Study
Aditya K
Slawomir Grzonkowski
NhienAn Lekhac
19
27
0
03 Aug 2018
MLCapsule: Guarded Offline Deployment of Machine Learning as a Service
L. Hanzlik
Yang Zhang
Kathrin Grosse
A. Salem
Maximilian Augustin
Michael Backes
Mario Fritz
OffRL
22
103
0
01 Aug 2018
Harmonic Adversarial Attack Method
Wen Heng
Shuchang Zhou
Tingting Jiang
AAML
22
6
0
18 Jul 2018
Adversarial Examples in Deep Learning: Characterization and Divergence
Wenqi Wei
Ling Liu
Margaret Loper
Stacey Truex
Lei Yu
Mehmet Emre Gursoy
Yanzhao Wu
AAML
SILM
33
18
0
29 Jun 2018
Copycat CNN: Stealing Knowledge by Persuading Confession with Random Non-Labeled Data
Jacson Rodrigues Correia-Silva
Rodrigo Berriel
C. Badue
Alberto F. de Souza
Thiago Oliveira-Santos
MLAU
14
174
0
14 Jun 2018
Resisting Adversarial Attacks using Gaussian Mixture Variational Autoencoders
Partha Ghosh
Arpan Losalka
Michael J. Black
AAML
21
77
0
31 May 2018
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks
Chun-Chen Tu
Pai-Shun Ting
Pin-Yu Chen
Sijia Liu
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
Shin-Ming Cheng
MLAU
AAML
26
395
0
30 May 2018
Laplacian Networks: Bounding Indicator Function Smoothness for Neural Network Robustness
Carlos Lassance
Vincent Gripon
Antonio Ortega
AAML
24
16
0
24 May 2018
Towards Robust Training of Neural Networks by Regularizing Adversarial Gradients
Fuxun Yu
Zirui Xu
Yanzhi Wang
Chenchen Liu
Xiang Chen
AAML
18
10
0
23 May 2018
Adversarially Robust Training through Structured Gradient Regularization
Kevin Roth
Aurelien Lucchi
Sebastian Nowozin
Thomas Hofmann
30
23
0
22 May 2018
Detecting Adversarial Samples for Deep Neural Networks through Mutation Testing
Jingyi Wang
Jun Sun
Peixin Zhang
Xinyu Wang
AAML
21
41
0
14 May 2018
Black-box Adversarial Attacks with Limited Queries and Information
Andrew Ilyas
Logan Engstrom
Anish Athalye
Jessy Lin
MLAU
AAML
70
1,191
0
23 Apr 2018
Adversarial Attacks Against Medical Deep Learning Systems
S. G. Finlayson
Hyung Won Chung
I. Kohane
Andrew L. Beam
SILM
AAML
OOD
MedIm
25
230
0
15 Apr 2018
Bypassing Feature Squeezing by Increasing Adversary Strength
Yash Sharma
Pin-Yu Chen
AAML
19
34
0
27 Mar 2018
On the Limitation of Local Intrinsic Dimensionality for Characterizing the Subspaces of Adversarial Examples
Pei-Hsuan Lu
Pin-Yu Chen
Chia-Mu Yu
AAML
17
26
0
26 Mar 2018
Clipping free attacks against artificial neural networks
B. Addad
Jérôme Kodjabachian
Christophe Meyer
AAML
16
1
0
26 Mar 2018
Security Theater: On the Vulnerability of Classifiers to Exploratory Attacks
Tegjyot Singh Sethi
M. Kantardzic
J. Ryu
AAML
23
11
0
24 Mar 2018
A Dynamic-Adversarial Mining Approach to the Security of Machine Learning
Tegjyot Singh Sethi
M. Kantardzic
Lingyu Lyu
Jiashun Chen
AAML
16
11
0
24 Mar 2018
Technical Report: When Does Machine Learning FAIL? Generalized Transferability for Evasion and Poisoning Attacks
Octavian Suciu
R. Marginean
Yigitcan Kaya
Hal Daumé
Tudor Dumitras
AAML
40
286
0
19 Mar 2018
Understanding and Enhancing the Transferability of Adversarial Examples
Lei Wu
Zhanxing Zhu
Cheng Tai
E. Weinan
AAML
SILM
30
97
0
27 Feb 2018
Are Generative Classifiers More Robust to Adversarial Attacks?
Yingzhen Li
John Bradshaw
Yash Sharma
AAML
57
78
0
19 Feb 2018
DARTS: Deceiving Autonomous Cars with Toxic Signs
Chawin Sitawarin
A. Bhagoji
Arsalan Mosenia
M. Chiang
Prateek Mittal
AAML
37
233
0
18 Feb 2018
Few-shot learning of neural networks from scratch by pseudo example optimization
Akisato Kimura
Zoubin Ghahramani
Koh Takeuchi
Tomoharu Iwata
N. Ueda
35
52
0
08 Feb 2018
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Bo-wen Li
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
D. Song
Michael E. Houle
James Bailey
AAML
43
730
0
08 Jan 2018
Audio Adversarial Examples: Targeted Attacks on Speech-to-Text
Nicholas Carlini
D. Wagner
AAML
38
1,074
0
05 Jan 2018
Query-limited Black-box Attacks to Classifiers
Fnu Suya
Yuan Tian
David Evans
Paolo Papotti
AAML
20
24
0
23 Dec 2017
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning
Xinyun Chen
Chang-rui Liu
Bo-wen Li
Kimberly Lu
D. Song
AAML
SILM
44
1,808
0
15 Dec 2017
Generative Adversarial Perturbations
Omid Poursaeed
Isay Katsman
Bicheng Gao
Serge J. Belongie
AAML
GAN
WIGM
31
351
0
06 Dec 2017
Attacking Visual Language Grounding with Adversarial Examples: A Case Study on Neural Image Captioning
Hongge Chen
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
Cho-Jui Hsieh
GAN
AAML
35
49
0
06 Dec 2017
Hardening Quantum Machine Learning Against Adversaries
N. Wiebe
Ramnath Kumar
AAML
25
20
0
17 Nov 2017
Towards Reverse-Engineering Black-Box Neural Networks
Seong Joon Oh
Maximilian Augustin
Bernt Schiele
Mario Fritz
AAML
292
3
0
06 Nov 2017
Generating Natural Adversarial Examples
Zhengli Zhao
Dheeru Dua
Sameer Singh
GAN
AAML
40
596
0
31 Oct 2017
Neural Trojans
Yuntao Liu
Yang Xie
Ankur Srivastava
AAML
13
350
0
03 Oct 2017
PassGAN: A Deep Learning Approach for Password Guessing
Briland Hitaj
Paolo Gasti
G. Ateniese
Fernando Perez-Cruz
GAN
30
246
0
01 Sep 2017
Towards Crafting Text Adversarial Samples
Suranjana Samanta
S. Mehta
AAML
27
219
0
10 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
A. Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
89
11,872
0
19 Jun 2017
Adversarial Example Defenses: Ensembles of Weak Defenses are not Strong
Warren He
James Wei
Xinyun Chen
Nicholas Carlini
D. Song
AAML
43
242
0
15 Jun 2017
Analyzing the Robustness of Nearest Neighbors to Adversarial Examples
Yizhen Wang
S. Jha
Kamalika Chaudhuri
AAML
19
154
0
13 Jun 2017
Towards Robust Detection of Adversarial Examples
Tianyu Pang
Chao Du
Yinpeng Dong
Jun Zhu
AAML
39
18
0
02 Jun 2017
Black-Box Attacks against RNN based Malware Detection Algorithms
Weiwei Hu
Ying Tan
10
149
0
23 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
61
1,842
0
20 May 2017
The Space of Transferable Adversarial Examples
Florian Tramèr
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
SILM
41
555
0
11 Apr 2017
Adversarial Image Perturbation for Privacy Protection -- A Game Theory Perspective
Seong Joon Oh
Mario Fritz
Bernt Schiele
CVBM
AAML
339
160
0
28 Mar 2017
Data Driven Exploratory Attacks on Black Box Classifiers in Adversarial Domains
Tegjyot Singh Sethi
M. Kantardzic
AAML
27
49
0
23 Mar 2017
Previous
1
2
3
4
5
6
7
8
Next