Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1601.00670
Cited By
Variational Inference: A Review for Statisticians
4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Inference: A Review for Statisticians"
50 / 1,814 papers shown
Title
Uncertainty Quantification on Graph Learning: A Survey
Chao Chen
Chenghua Guo
Rui Xu
Xiangwen Liao
Xi Zhang
Sihong Xie
Hui Xiong
Mohit Bansal
AI4CE
37
1
0
23 Apr 2024
Physics-integrated generative modeling using attentive planar normalizing flow based variational autoencoder
Sheikh Waqas Akhtar
DRL
25
0
0
18 Apr 2024
Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem
Roumen Nikolaev Popov
29
0
0
16 Apr 2024
Dynamic fault detection and diagnosis of industrial alkaline water electrolyzer process with variational Bayesian dictionary learning
Qi Zhang
Lei Xie
Wei Xu
Hongye Su
18
4
0
15 Apr 2024
Convergence of coordinate ascent variational inference for log-concave measures via optimal transport
Manuel Arnese
Daniel Lacker
29
6
0
12 Apr 2024
Polynomial-time derivation of optimal k-tree topology from Markov networks
Fereshteh R. Dastjerdi
Liming Cai
11
0
0
09 Apr 2024
Dynamic Conditional Optimal Transport through Simulation-Free Flows
Gavin Kerrigan
Giosue Migliorini
Padhraic Smyth
OT
38
10
0
05 Apr 2024
Bi-level Guided Diffusion Models for Zero-Shot Medical Imaging Inverse Problems
Hossein Askari
Fred Roosta
Hongfu Sun
MedIm
DiffM
38
3
0
04 Apr 2024
CLaM-TTS: Improving Neural Codec Language Model for Zero-Shot Text-to-Speech
Jaehyeon Kim
Keon Lee
Seungjun Chung
Jaewoong Cho
74
39
0
03 Apr 2024
Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation
Minglei Yang
Pengjun Wang
Ming Fan
Dan Lu
Yanzhao Cao
Guannan Zhang
AI4CE
27
1
0
31 Mar 2024
Causal Inference for Human-Language Model Collaboration
Bohan Zhang
Yixin Wang
Paramveer S. Dhillon
38
2
0
30 Mar 2024
Uncertainty-Aware SAR ATR: Defending Against Adversarial Attacks via Bayesian Neural Networks
Tian Ye
Rajgopal Kannan
Viktor Prasanna
Carl E. Busart
AAML
16
1
0
27 Mar 2024
Neural Multimodal Topic Modeling: A Comprehensive Evaluation
Felipe González-Pizarro
Giuseppe Carenini
VGen
45
1
0
26 Mar 2024
Bridging the Sim-to-Real Gap with Bayesian Inference
Jonas Rothfuss
Bhavya Sukhija
Lenart Treven
Florian Dorfler
Stelian Coros
Andreas Krause
AI4CE
41
3
0
25 Mar 2024
Federated Bayesian Deep Learning: The Application of Statistical Aggregation Methods to Bayesian Models
John Fischer
Marko Orescanin
Justin Loomis
Patrick McClure
FedML
51
3
0
22 Mar 2024
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
71
2
0
20 Mar 2024
Predictive, scalable and interpretable knowledge tracing on structured domains
Hanqi Zhou
Robert Bamler
Charley M. Wu
Álvaro Tejero-Cantero
AI4Ed
20
7
0
19 Mar 2024
Function-space Parameterization of Neural Networks for Sequential Learning
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
Joni Pajarinen
Arno Solin
BDL
34
5
0
16 Mar 2024
Sequential Monte Carlo for Inclusive KL Minimization in Amortized Variational Inference
Declan McNamara
J. Loper
Jeffrey Regier
BDL
39
2
0
15 Mar 2024
Disentangling shared and private latent factors in multimodal Variational Autoencoders
Kaspar Märtens
Christopher Yau
DRL
11
0
0
10 Mar 2024
Nonparametric Automatic Differentiation Variational Inference with Spline Approximation
Yuda Shao
Shan Yu
Tianshu Feng
34
1
0
10 Mar 2024
Variational Inference of Parameters in Opinion Dynamics Models
Jacopo Lenti
Fabrizio Silvestri
G. D. F. Morales
31
3
0
08 Mar 2024
Uncertainty quantification for deeponets with ensemble kalman inversion
Andrew Pensoneault
Xueyu Zhu
26
1
0
06 Mar 2024
CoRMF: Criticality-Ordered Recurrent Mean Field Ising Solver
Zhenyu Pan
Ammar Gilani
En-Jui Kuo
Zhuo Liu
LRM
43
4
0
05 Mar 2024
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
Yidong Zhao
João Tourais
Iain Pierce
Christian Nitsche
T. Treibel
Sebastian Weingartner
Artur M. Schweidtmann
Qian Tao
BDL
UQCV
43
5
0
04 Mar 2024
Feint in Multi-Player Games
Junyu Liu
Wangkai Jin
Xiangjun Peng
OffRL
25
0
0
04 Mar 2024
Learning with Logical Constraints but without Shortcut Satisfaction
Zenan Li
Zehua Liu
Yuan Yao
Jingwei Xu
Taolue Chen
Xiaoxing Ma
Jian Lu
NAI
30
18
0
01 Mar 2024
On Cyclical MCMC Sampling
Liwei Wang
Xinru Liu
Aaron Smith
Aguemon Y. Atchadé
30
1
0
01 Mar 2024
Sparse Variational Contaminated Noise Gaussian Process Regression with Applications in Geomagnetic Perturbations Forecasting
Daniel Iong
Matthew McAnear
Yuezhou Qu
S. Zou
Gabor Toth
Yang Chen
16
0
0
27 Feb 2024
Material Microstructure Design Using VAE-Regression with Multimodal Prior
Avadhut Sardeshmukh
Sreedhar Reddy
B. Gautham
Pushpak Bhattacharyya
19
0
0
27 Feb 2024
Stable Training of Normalizing Flows for High-dimensional Variational Inference
Daniel Andrade
BDL
TPM
43
1
0
26 Feb 2024
Accelerating Convergence of Stein Variational Gradient Descent via Deep Unfolding
Yuya Kawamura
Satoshi Takabe
BDL
34
0
0
23 Feb 2024
Batch and match: black-box variational inference with a score-based divergence
Diana Cai
Chirag Modi
Loucas Pillaud-Vivien
C. Margossian
Robert Mansel Gower
David M. Blei
Lawrence K. Saul
38
9
0
22 Feb 2024
Composite likelihood inference for the Poisson log-normal model
Julien Stoehr
Stephane S. Robin
18
3
0
22 Feb 2024
Bayesian Neural Networks with Domain Knowledge Priors
Dylan Sam
Rattana Pukdee
Daniel P. Jeong
Yewon Byun
J. Zico Kolter
BDL
UQCV
38
9
0
20 Feb 2024
Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models via Reparameterisation and Smoothing
Dominik Wagner
Basim Khajwal
C.-H. Luke Ong
19
0
0
19 Feb 2024
Monte Carlo with kernel-based Gibbs measures: Guarantees for probabilistic herding
Martin Rouault
Rémi Bardenet
Mylène Maïda
41
0
0
18 Feb 2024
Dynamic planning in hierarchical active inference
Matteo Priorelli
Ivilin Peev Stoianov
AI4CE
30
4
0
18 Feb 2024
Uncertainty Quantification of Graph Convolution Neural Network Models of Evolving Processes
J. Hauth
C. Safta
Xun Huan
Ravi G. Patel
Reese E. Jones
BDL
UQCV
31
2
0
17 Feb 2024
Predictive Uncertainty Quantification via Risk Decompositions for Strictly Proper Scoring Rules
Nikita Kotelevskii
Maxim Panov
PER
UQCV
UD
34
3
0
16 Feb 2024
Recommendations for Baselines and Benchmarking Approximate Gaussian Processes
Sebastian W. Ober
A. Artemev
Marcel Wagenlander
Rudolfs Grobins
Mark van der Wilk
GP
18
1
0
15 Feb 2024
Diffeomorphic Measure Matching with Kernels for Generative Modeling
Biraj Pandey
Bamdad Hosseini
Pau Batlle
H. Owhadi
23
3
0
12 Feb 2024
Improvement and generalization of ABCD method with Bayesian inference
Ezequiel Alvarez
L. Rold
Manuel Szewc
A. Szynkman
Santiago A. Tanco
Tatiana Tarutina
14
3
0
12 Feb 2024
Generative Modeling of Discrete Joint Distributions by E-Geodesic Flow Matching on Assignment Manifolds
Bastian Boll
Daniel Gonzalez-Alvarado
Christoph Schnörr
DRL
45
4
0
12 Feb 2024
The Relevance Feature and Vector Machine for health applications
Albert Belenguer-Llorens
C. Sevilla-Salcedo
Emilio Parrado-Hernández
Vanessa Gómez-Verdejo
9
0
0
11 Feb 2024
SAE: Single Architecture Ensemble Neural Networks
Martin Ferianc
Hongxiang Fan
Miguel R. D. Rodrigues
UQCV
15
0
0
09 Feb 2024
Domain Generalization with Small Data
Kecheng Chen
Elena Gal
Hong Yan
Haoliang Li
OOD
27
5
0
09 Feb 2024
Wasserstein Gradient Flows for Moreau Envelopes of f-Divergences in Reproducing Kernel Hilbert Spaces
Viktor Stein
Sebastian Neumayer
Gabriele Steidl
Nicolaj Rux
50
9
0
07 Feb 2024
Variational Shapley Network: A Probabilistic Approach to Self-Explaining Shapley values with Uncertainty Quantification
Mert Ketenci
Inigo Urteaga
Victor Alfonso Rodriguez
Noémie Elhadad
A. Perotte
FAtt
22
0
0
06 Feb 2024
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
Idan Achituve
I. Diamant
Arnon Netzer
Gal Chechik
Ethan Fetaya
UQCV
32
4
0
06 Feb 2024
Previous
1
2
3
...
5
6
7
...
35
36
37
Next