ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.05358
29
3

Variational Inference of Parameters in Opinion Dynamics Models

8 March 2024
Jacopo Lenti
Fabrizio Silvestri
G. D. F. Morales
ArXivPDFHTML
Abstract

Despite the frequent use of agent-based models (ABMs) for studying social phenomena, parameter estimation remains a challenge, often relying on costly simulation-based heuristics. This work uses variational inference to estimate the parameters of an opinion dynamics ABM, by transforming the estimation problem into an optimization task that can be solved directly. Our proposal relies on probabilistic generative ABMs (PGABMs): we start by synthesizing a probabilistic generative model from the ABM rules. Then, we transform the inference process into an optimization problem suitable for automatic differentiation. In particular, we use the Gumbel-Softmax reparameterization for categorical agent attributes and stochastic variational inference for parameter estimation. Furthermore, we explore the trade-offs of using variational distributions with different complexity: normal distributions and normalizing flows. We validate our method on a bounded confidence model with agent roles (leaders and followers). Our approach estimates both macroscopic (bounded confidence intervals and backfire thresholds) and microscopic (200200200 categorical, agent-level roles) more accurately than simulation-based and MCMC methods. Consequently, our technique enables experts to tune and validate their ABMs against real-world observations, thus providing insights into human behavior in social systems via data-driven analysis.

View on arXiv
Comments on this paper