ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00670
  4. Cited By
Variational Inference: A Review for Statisticians
v1v2v3v4v5v6v7v8v9 (latest)

Variational Inference: A Review for Statisticians

4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference: A Review for Statisticians"

50 / 1,838 papers shown
Title
Learning Optimal Filters Using Variational Inference
Learning Optimal Filters Using Variational Inference
Enoch Luk
Eviatar Bach
Ricardo Baptista
Andrew Stuart
88
7
0
26 Jun 2024
Efficient, Multimodal, and Derivative-Free Bayesian Inference With
  Fisher-Rao Gradient Flows
Efficient, Multimodal, and Derivative-Free Bayesian Inference With Fisher-Rao Gradient Flows
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
74
7
0
25 Jun 2024
Tree-based variational inference for Poisson log-normal models
Tree-based variational inference for Poisson log-normal models
Alexandre Chaussard
Anna Bonnet
Elisabeth Gassiat
Sylvain Le Corff
65
0
0
25 Jun 2024
Peirce in the Machine: How Mixture of Experts Models Perform Hypothesis
  Construction
Peirce in the Machine: How Mixture of Experts Models Perform Hypothesis Construction
Bruce Rushing
MoE
50
0
0
24 Jun 2024
VICatMix: variational Bayesian clustering and variable selection for
  discrete biomedical data
VICatMix: variational Bayesian clustering and variable selection for discrete biomedical data
Paul D. W. Kirk
Jackie Rao
132
1
0
23 Jun 2024
Hardware-Aware Neural Dropout Search for Reliable Uncertainty Prediction
  on FPGA
Hardware-Aware Neural Dropout Search for Reliable Uncertainty Prediction on FPGA
Zehuan Zhang
Hongxiang Fan
Hao Mark Chen
Lukasz Dudziak
Wayne Luk
BDL
70
0
0
23 Jun 2024
Recursive variational Gaussian approximation with the Whittle likelihood
  for linear non-Gaussian state space models
Recursive variational Gaussian approximation with the Whittle likelihood for linear non-Gaussian state space models
Bao Anh Vu
David Gunawan
Andrew Zammit-Mangion
73
1
0
23 Jun 2024
Probabilistic Programming with Programmable Variational Inference
Probabilistic Programming with Programmable Variational Inference
McCoy R. Becker
Alexander K. Lew
Xiaoyan Wang
Matin Ghavami
Mathieu Huot
Martin Rinard
Vikash K. Mansinghka
131
5
0
22 Jun 2024
Flexible Tails for Normalizing Flows
Flexible Tails for Normalizing Flows
Tennessee Hickling
Dennis Prangle
64
0
0
22 Jun 2024
On Naive Mean-Field Approximation for high-dimensional canonical GLMs
On Naive Mean-Field Approximation for high-dimensional canonical GLMs
Soumendu Sundar Mukherjee
Jiaze Qiu
Subhabrata Sen
63
1
0
21 Jun 2024
Hierarchical thematic classification of major conference proceedings
Hierarchical thematic classification of major conference proceedings
Arsentii Kuzmin
Alexander Aduenko
Vadim Strijov
36
0
0
21 Jun 2024
Bayesian Bandit Algorithms with Approximate Inference in Stochastic Linear Bandits
Bayesian Bandit Algorithms with Approximate Inference in Stochastic Linear Bandits
Ziyi Huang
Henry Lam
Haofeng Zhang
87
0
0
20 Jun 2024
A variational Bayes approach to debiased inference for low-dimensional
  parameters in high-dimensional linear regression
A variational Bayes approach to debiased inference for low-dimensional parameters in high-dimensional linear regression
Ismaël Castillo
Alice L'Huillier
Kolyan Ray
Luke Travis
67
0
0
18 Jun 2024
Variational Distillation of Diffusion Policies into Mixture of Experts
Variational Distillation of Diffusion Policies into Mixture of Experts
Hongyi Zhou
Denis Blessing
Ge Li
Onur Celik
Xiaogang Jia
Gerhard Neumann
Rudolf Lioutikov
DiffM
74
4
0
18 Jun 2024
Online Pareto-Optimal Decision-Making for Complex Tasks using Active
  Inference
Online Pareto-Optimal Decision-Making for Complex Tasks using Active Inference
Peter Amorese
Shohei Wakayama
Nisar R. Ahmed
Morteza Lahijanian
72
3
0
17 Jun 2024
Symmetry-driven embedding of networks in hyperbolic space
Symmetry-driven embedding of networks in hyperbolic space
Simon Lizotte
Jean-Gabriel Young
Antoine Allard
83
1
0
15 Jun 2024
Active Inference Meeting Energy-Efficient Control of Parallel and
  Identical Machines
Active Inference Meeting Energy-Efficient Control of Parallel and Identical Machines
Yavar Taheri Yeganeh
Mohsen Jafari
Andrea Matta
86
1
0
13 Jun 2024
Adaptive Slot Attention: Object Discovery with Dynamic Slot Number
Adaptive Slot Attention: Object Discovery with Dynamic Slot Number
Ke Fan
Zechen Bai
Tianjun Xiao
Tong He
Max Horn
Yanwei Fu
Francesco Locatello
Zheng Zhang
OCL
97
10
0
13 Jun 2024
A geometric approach to informed MCMC sampling
A geometric approach to informed MCMC sampling
Vivekananda Roy
78
0
0
13 Jun 2024
Global Tests for Smoothed Functions in Mean Field Variational Additive
  Models
Global Tests for Smoothed Functions in Mean Field Variational Additive Models
Mark J. Meyer
Junyi Wei
35
0
0
12 Jun 2024
Balancing Molecular Information and Empirical Data in the Prediction of
  Physico-Chemical Properties
Balancing Molecular Information and Empirical Data in the Prediction of Physico-Chemical Properties
Johannes Zenn
Dominik Gond
Fabian Jirasek
Robert Bamler
49
2
0
12 Jun 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for
  Sampling
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
146
27
0
11 Jun 2024
Convergence rate of random scan Coordinate Ascent Variational Inference
  under log-concavity
Convergence rate of random scan Coordinate Ascent Variational Inference under log-concavity
Hugo Lavenant
Giacomo Zanella
63
5
0
11 Jun 2024
A Concise Mathematical Description of Active Inference in Discrete Time
A Concise Mathematical Description of Active Inference in Discrete Time
Jesse van Oostrum
Carlotta Langer
Nihat Ay
78
1
0
11 Jun 2024
Theoretical Guarantees for Variational Inference with Fixed-Variance
  Mixture of Gaussians
Theoretical Guarantees for Variational Inference with Fixed-Variance Mixture of Gaussians
Tom Huix
Anna Korba
Alain Durmus
Eric Moulines
89
9
0
06 Jun 2024
Approximation-Aware Bayesian Optimization
Approximation-Aware Bayesian Optimization
Natalie Maus
Kyurae Kim
Geoff Pleiss
David Eriksson
John P. Cunningham
Jacob R. Gardner
69
3
0
06 Jun 2024
You Only Accept Samples Once: Fast, Self-Correcting Stochastic
  Variational Inference
You Only Accept Samples Once: Fast, Self-Correcting Stochastic Variational Inference
Dominic B. Dayta
TPMBDL
55
0
0
05 Jun 2024
Posterior and variational inference for deep neural networks with heavy-tailed weights
Posterior and variational inference for deep neural networks with heavy-tailed weights
Ismael Castillo
Paul Egels
BDL
126
4
0
05 Jun 2024
Ai-Sampler: Adversarial Learning of Markov kernels with involutive maps
Ai-Sampler: Adversarial Learning of Markov kernels with involutive maps
Evgenii Egorov
Ricardo Valperga
E. Gavves
BDLGAN
81
1
0
04 Jun 2024
Disentangled Representation via Variational AutoEncoder for Continuous
  Treatment Effect Estimation
Disentangled Representation via Variational AutoEncoder for Continuous Treatment Effect Estimation
Ruijing Cui
Jianbin Sun
Bingyu He
Kewei Yang
Bingfeng Ge
69
0
0
04 Jun 2024
Understanding Stochastic Natural Gradient Variational Inference
Understanding Stochastic Natural Gradient Variational Inference
Kaiwen Wu
Jacob R. Gardner
BDL
89
2
0
04 Jun 2024
Diffusion Boosted Trees
Diffusion Boosted Trees
Xizewen Han
Mingyuan Zhou
AI4CE
111
0
0
03 Jun 2024
Logistic Variational Bayes Revisited
Logistic Variational Bayes Revisited
M. Komodromos
Marina Evangelou
Sarah Filippi
BDL
57
0
0
02 Jun 2024
Representation and De-interleaving of Mixtures of Hidden Markov
  Processes
Representation and De-interleaving of Mixtures of Hidden Markov Processes
Jiadi Bao
Mengtao Zhu
Yunjie Li
Shafei Wang
31
0
0
01 Jun 2024
Flexible inference in heterogeneous and attributed multilayer networks
Flexible inference in heterogeneous and attributed multilayer networks
Martina Contisciani
Marius Hobbhahn
Eleanor A. Power
Philipp Hennig
Caterina De Bacco
91
2
0
31 May 2024
Enhancing Generative Molecular Design via Uncertainty-guided Fine-tuning
  of Variational Autoencoders
Enhancing Generative Molecular Design via Uncertainty-guided Fine-tuning of Variational Autoencoders
Nafiz Abeer
Sanket Jantre
Nathan M. Urban
Byung-Jun Yoon
87
0
0
31 May 2024
Scalable Bayesian Learning with posteriors
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDLUQCV
182
2
0
31 May 2024
Recurrent Deep Kernel Learning of Dynamical Systems
Recurrent Deep Kernel Learning of Dynamical Systems
N. Botteghi
Paolo Motta
Andrea Manzoni
P. Zunino
Mengwu Guo
60
1
0
30 May 2024
Understanding and mitigating difficulties in posterior predictive
  evaluation
Understanding and mitigating difficulties in posterior predictive evaluation
Abhinav Agrawal
Justin Domke
UQCV
74
0
0
30 May 2024
Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs
  with applications in heterogeneous media
Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs with applications in heterogeneous media
Matthaios Chatzopoulos
P. Koutsourelakis
AI4CE
81
3
0
29 May 2024
Kernel Semi-Implicit Variational Inference
Kernel Semi-Implicit Variational Inference
Ziheng Cheng
Longlin Yu
Tianyu Xie
Shiyue Zhang
Cheng Zhang
57
7
0
29 May 2024
Preferred-Action-Optimized Diffusion Policies for Offline Reinforcement
  Learning
Preferred-Action-Optimized Diffusion Policies for Offline Reinforcement Learning
Tianle Zhang
Jiayi Guan
Lin Zhao
Yihang Li
Dongjiang Li
...
Lei Sun
Yue Chen
Xuelong Wei
Lusong Li
Xiaodong He
92
2
0
29 May 2024
Evaluating Bayesian deep learning for radio galaxy classification
Evaluating Bayesian deep learning for radio galaxy classification
Devina Mohan
Anna M. M. Scaife
UQCVBDL
131
1
0
28 May 2024
FASTopic: A Fast, Adaptive, Stable, and Transferable Topic Modeling
  Paradigm
FASTopic: A Fast, Adaptive, Stable, and Transferable Topic Modeling Paradigm
Xiaobao Wu
Thong Nguyen
Delvin Ce Zhang
William Yang Wang
Anh Tuan Luu
124
17
0
28 May 2024
Modeling Dynamic Topics in Chain-Free Fashion by Evolution-Tracking
  Contrastive Learning and Unassociated Word Exclusion
Modeling Dynamic Topics in Chain-Free Fashion by Evolution-Tracking Contrastive Learning and Unassociated Word Exclusion
Xiaobao Wu
Xinshuai Dong
Liangming Pan
Thong Nguyen
Anh Tuan Luu
134
14
0
28 May 2024
SEMF: Supervised Expectation-Maximization Framework for Predicting Intervals
SEMF: Supervised Expectation-Maximization Framework for Predicting Intervals
Ilia Azizi
M. Boldi
V. Chavez-Demoulin
148
0
0
28 May 2024
Bayesian RG Flow in Neural Network Field Theories
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
135
2
0
27 May 2024
Diffusion-Reward Adversarial Imitation Learning
Diffusion-Reward Adversarial Imitation Learning
Chun-Mao Lai
Hsiang-Chun Wang
Ping-Chun Hsieh
Yu-Chiang Frank Wang
Min-Hung Chen
Shao-Hua Sun
83
9
0
25 May 2024
Federated Learning for Non-factorizable Models using Deep Generative
  Prior Approximations
Federated Learning for Non-factorizable Models using Deep Generative Prior Approximations
Conor Hassan
Joshua J Bon
Elizaveta Semenova
Antonietta Mira
Kerrie Mengersen
53
0
0
25 May 2024
Differentiable Annealed Importance Sampling Minimizes The Jensen-Shannon
  Divergence Between Initial and Target Distribution
Differentiable Annealed Importance Sampling Minimizes The Jensen-Shannon Divergence Between Initial and Target Distribution
Johannes Zenn
Robert Bamler
61
1
0
23 May 2024
Previous
123456...353637
Next