ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00670
  4. Cited By
Variational Inference: A Review for Statisticians
v1v2v3v4v5v6v7v8v9 (latest)

Variational Inference: A Review for Statisticians

4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference: A Review for Statisticians"

50 / 1,838 papers shown
Title
Stein Variational Gradient Descent with Multiple Kernel
Stein Variational Gradient Descent with Multiple Kernel
Qingzhong Ai
Shiyu Liu
Lirong He
Zenglin Xu
69
5
0
20 Jul 2021
Structured Stochastic Gradient MCMC
Structured Stochastic Gradient MCMC
Antonios Alexos
Alex Boyd
Stephan Mandt
BDL
76
13
0
19 Jul 2021
Efficient Bayesian Sampling Using Normalizing Flows to Assist Markov
  Chain Monte Carlo Methods
Efficient Bayesian Sampling Using Normalizing Flows to Assist Markov Chain Monte Carlo Methods
Marylou Gabrié
Grant M. Rotskoff
Eric Vanden-Eijnden
52
21
0
16 Jul 2021
Tracing Halpha Fibrils through Bayesian Deep Learning
Tracing Halpha Fibrils through Bayesian Deep Learning
Haodi Jiang
J. Jing
Jiasheng Wang
Chang Liu
Qin Li
Yan Xu
Jinqiao Wang
Haimin Wang
29
14
0
16 Jul 2021
Visual Adversarial Imitation Learning using Variational Models
Visual Adversarial Imitation Learning using Variational Models
Rafael Rafailov
Tianhe Yu
Aravind Rajeswaran
Chelsea Finn
SSL
116
50
0
16 Jul 2021
Spectrum Gaussian Processes Based On Tunable Basis Functions
Spectrum Gaussian Processes Based On Tunable Basis Functions
Wenqi Fang
Guanlin Wu
Jingjing Li
Ziyi Wang
Jiang Cao
Yang Ping
25
0
0
14 Jul 2021
Bayesian brains and the Rényi divergence
Bayesian brains and the Rényi divergence
Noor Sajid
Francesco Faccio
Lancelot Da Costa
Thomas Parr
Jürgen Schmidhuber
Karl J. Friston
152
13
0
12 Jul 2021
Noisy Training Improves E2E ASR for the Edge
Noisy Training Improves E2E ASR for the Edge
Dilin Wang
Yuan Shangguan
Haichuan Yang
P. Chuang
Jiatong Zhou
Meng Li
Ganesh Venkatesh
Ozlem Kalinli
Vikas Chandra
79
4
0
09 Jul 2021
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
167
83
0
09 Jul 2021
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
Tomas Geffner
Justin Domke
95
36
0
08 Jul 2021
Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian Nonparametrics
Ryan Giordano
Runjing Liu
Michael I. Jordan
Tamara Broderick
31
16
0
08 Jul 2021
Viscos Flows: Variational Schur Conditional Sampling With Normalizing
  Flows
Viscos Flows: Variational Schur Conditional Sampling With Normalizing Flows
Vincent Moens
Aivar Sootla
H. Ammar
Jun Wang
TPM
80
1
0
06 Jul 2021
Randomized multilevel Monte Carlo for embarrassingly parallel inference
Randomized multilevel Monte Carlo for embarrassingly parallel inference
Ajay Jasra
K. Law
Alexander Tarakanov
Fangyuan Yu
85
2
0
05 Jul 2021
Variational Bayesian Inference for a Polytomous-Attribute Saturated
  Diagnostic Classification Model with Parallel Computing
Variational Bayesian Inference for a Polytomous-Attribute Saturated Diagnostic Classification Model with Parallel Computing
Motonori Oka
S. Saso
Kensuke Okada
24
0
0
05 Jul 2021
The Causal-Neural Connection: Expressiveness, Learnability, and
  Inference
The Causal-Neural Connection: Expressiveness, Learnability, and Inference
K. Xia
Kai-Zhan Lee
Yoshua Bengio
Elias Bareinboim
CML
81
111
0
02 Jul 2021
Valid prediction intervals for regression problems
Valid prediction intervals for regression problems
Nicolas Dewolf
B. De Baets
Willem Waegeman
171
46
0
01 Jul 2021
Applications of the Free Energy Principle to Machine Learning and
  Neuroscience
Applications of the Free Energy Principle to Machine Learning and Neuroscience
Beren Millidge
DRL
117
8
0
30 Jun 2021
Dep-$L_0$: Improving $L_0$-based Network Sparsification via Dependency
  Modeling
Dep-L0L_0L0​: Improving L0L_0L0​-based Network Sparsification via Dependency Modeling
Yang Li
Shihao Ji
35
1
0
30 Jun 2021
Variational Refinement for Importance Sampling Using the Forward
  Kullback-Leibler Divergence
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi-An Ma
Michael I. Jordan
BDL
129
40
0
30 Jun 2021
Flexible Variational Bayes based on a Copula of a Mixture
Flexible Variational Bayes based on a Copula of a Mixture
David Gunawan
Robert Kohn
David J. Nott
107
12
0
28 Jun 2021
PNet -- A Deep Learning Based Photometry and Astrometry Bayesian
  Framework
PNet -- A Deep Learning Based Photometry and Astrometry Bayesian Framework
Rui Sun
P. Jia
Yongyang Sun
Zhimin Yang
Qiang Liu
H. Wei
3DPC
59
4
0
28 Jun 2021
Use of Variational Inference in Music Emotion Recognition
Use of Variational Inference in Music Emotion Recognition
Nathalie Deziderio
Hugo T. Carvalho
BDL
17
0
0
27 Jun 2021
Black Box Variational Bayesian Model Averaging
Black Box Variational Bayesian Model Averaging
Vojtech Kejzlar
Shrijita Bhattacharya
Mookyong Son
T. Maiti
BDL
53
3
0
23 Jun 2021
Variational Bayes in State Space Models: Inferential and Predictive
  Accuracy
Variational Bayes in State Space Models: Inferential and Predictive Accuracy
David T. Frazier
Rubén Loaiza-Maya
G. Martin
72
13
0
23 Jun 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To
  Pyramidal Bayesian Models
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
73
2
0
23 Jun 2021
Bayesian Joint Chance Constrained Optimization: Approximations and
  Statistical Consistency
Bayesian Joint Chance Constrained Optimization: Approximations and Statistical Consistency
Prateek Jaiswal
Harsha Honnappa
Vinayak A. Rao
28
2
0
23 Jun 2021
Local convexity of the TAP free energy and AMP convergence for
  Z2-synchronization
Local convexity of the TAP free energy and AMP convergence for Z2-synchronization
Michael Celentano
Z. Fan
Song Mei
FedML
103
23
0
21 Jun 2021
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Pashupati Hegde
Çağatay Yıldız
Harri Lähdesmäki
Samuel Kaski
Markus Heinonen
88
16
0
21 Jun 2021
Nonparametric Hamiltonian Monte Carlo
Nonparametric Hamiltonian Monte Carlo
Carol Mak
Fabian Zaiser
C.-H. Luke Ong
69
6
0
18 Jun 2021
Patch-Based Image Restoration using Expectation Propagation
Patch-Based Image Restoration using Expectation Propagation
Dan Yao
S. Mclaughlin
Y. Altmann
DiffM
56
5
0
18 Jun 2021
Causal Bias Quantification for Continuous Treatments
Causal Bias Quantification for Continuous Treatments
Gianluca Detommaso
Michael Bruckner
Philip Schulz
Victor Chernozhukov
CML
105
0
0
17 Jun 2021
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint
  Support
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
Pierre Glaser
Michael Arbel
Arthur Gretton
131
40
0
16 Jun 2021
Variational Causal Networks: Approximate Bayesian Inference over Causal
  Structures
Variational Causal Networks: Approximate Bayesian Inference over Causal Structures
Yashas Annadani
Jonas Rothfuss
Alexandre Lacoste
Nino Scherrer
Anirudh Goyal
Yoshua Bengio
Stefan Bauer
BDLCML
84
48
0
14 Jun 2021
Posterior Temperature Optimization in Variational Inference for Inverse
  Problems
Posterior Temperature Optimization in Variational Inference for Inverse Problems
M. Laves
Malte Tolle
Alexander Schlaefer
Sandy Engelhardt
109
3
0
11 Jun 2021
Order Matters: Probabilistic Modeling of Node Sequence for Graph
  Generation
Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation
Xiaohui Chen
Xu Han
Jiajing Hu
Francisco J. R. Ruiz
Liping Liu
BDL
75
35
0
11 Jun 2021
Deep Probabilistic Koopman: Long-term time-series forecasting under
  periodic uncertainties
Deep Probabilistic Koopman: Long-term time-series forecasting under periodic uncertainties
Alex Troy Mallen
Henning Lange
J. Nathan Kutz
AI4TS
63
8
0
10 Jun 2021
Conditional COT-GAN for Video Prediction with Kernel Smoothing
Conditional COT-GAN for Video Prediction with Kernel Smoothing
Tianlin Xu
Beatrice Acciaio
GANAI4TSCML
33
5
0
10 Jun 2021
An Interpretable Neural Network for Parameter Inference
An Interpretable Neural Network for Parameter Inference
Johann Pfitzinger
69
0
0
10 Jun 2021
Bayesian Attention Belief Networks
Bayesian Attention Belief Networks
Shujian Zhang
Xinjie Fan
Bo Chen
Mingyuan Zhou
BDL
110
32
0
09 Jun 2021
Loss function based second-order Jensen inequality and its application
  to particle variational inference
Loss function based second-order Jensen inequality and its application to particle variational inference
Futoshi Futami
Tomoharu Iwata
N. Ueda
Issei Sato
Masashi Sugiyama
74
4
0
09 Jun 2021
Nonlinear Hawkes Processes in Time-Varying System
Nonlinear Hawkes Processes in Time-Varying System
Feng Zhou
Quyu Kong
Yixuan Zhang
Cheng Feng
Jun Zhu
31
6
0
09 Jun 2021
Semantically Adversarial Scenario Generation with Explicit Knowledge
  Guidance
Semantically Adversarial Scenario Generation with Explicit Knowledge Guidance
Wenhao Ding
Hao-ming Lin
Yue Liu
Ding Zhao
GAN
132
1
0
08 Jun 2021
Bayesian inference on high-dimensional multivariate binary responses
Bayesian inference on high-dimensional multivariate binary responses
Antik Chakraborty
Rihui Ou
David B. Dunson
29
4
0
03 Jun 2021
Towards a Mathematical Theory of Abstraction
Towards a Mathematical Theory of Abstraction
Beren Millidge
AI4CE
23
2
0
03 Jun 2021
Evidential Turing Processes
Evidential Turing Processes
M. Kandemir
Abdullah Akgul
Manuel Haussmann
Gözde B. Ünal
EDLUQCVBDL
70
10
0
02 Jun 2021
Large-Scale Wasserstein Gradient Flows
Large-Scale Wasserstein Gradient Flows
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
103
76
0
01 Jun 2021
A survey of machine learning-based physics event generation
A survey of machine learning-based physics event generation
Yasir Alanazi
Nobuo Sato
P. Ambrozewicz
A. H. Blin
W. Melnitchouk
M. Battaglieri
Tianbo Liu
Yaohang Li
AI4CE
61
17
0
01 Jun 2021
Transformation Models for Flexible Posteriors in Variational Bayes
Transformation Models for Flexible Posteriors in Variational Bayes
Sefan Hörtling
Daniel Dold
Oliver Durr
Beate Sick
45
0
0
01 Jun 2021
Fitting Structural Equation Models via Variational Approximations
Fitting Structural Equation Models via Variational Approximations
Khue-Dung Dang
Luca Maestrini
38
10
0
31 May 2021
Cascaded Head-colliding Attention
Cascaded Head-colliding Attention
Lin Zheng
Zhiyong Wu
Lingpeng Kong
55
2
0
31 May 2021
Previous
123...202122...353637
Next