Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1601.00670
Cited By
v1
v2
v3
v4
v5
v6
v7
v8
v9 (latest)
Variational Inference: A Review for Statisticians
4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Inference: A Review for Statisticians"
50 / 1,838 papers shown
Title
Fast methods for posterior inference of two-group normal-normal models
P. Greengard
J. Hoskins
Charles C.Margossian
Andrew Gelman
Aki Vehtari
52
1
0
06 Oct 2021
Relative Entropy Gradient Sampler for Unnormalized Distributions
Xingdong Feng
Yuan Gao
Jian Huang
Yuling Jiao
Xu Liu
90
7
0
06 Oct 2021
Fast Scalable Image Restoration using Total Variation Priors and Expectation Propagation
D. Yao
S. Mclaughlin
Y. Altmann
49
6
0
04 Oct 2021
ALBU: An approximate Loopy Belief message passing algorithm for LDA to improve performance on small data sets
Rebecca M. C. Taylor
J. D. Preez
31
0
0
01 Oct 2021
Variational Marginal Particle Filters
Jinlin Lai
Justin Domke
Daniel Sheldon
95
9
0
30 Sep 2021
Variational Inference for Continuous-Time Switching Dynamical Systems
Lukas Kohs
Bastian Alt
Heinz Koeppl
91
8
0
29 Sep 2021
An Automated Approach to Causal Inference in Discrete Settings
Guilherme Duarte
N. Finkelstein
D. Knox
Jonathan Mummolo
I. Shpitser
96
49
0
28 Sep 2021
Bayesian Transfer Learning: An Overview of Probabilistic Graphical Models for Transfer Learning
Junyu Xuan
Jie Lu
Guangquan Zhang
BDL
453
7
0
27 Sep 2021
Anomalous Edge Detection in Edge Exchangeable Social Network Models
Rui Luo
Buddhika Nettasinghe
Vikram Krishnamurthy
185
18
0
27 Sep 2021
Bayesian non-parametric non-negative matrix factorization for pattern identification in environmental mixtures
E. Gibson
S. Rowland
Jeff Goldsmith
John Paisley
J. Herbstman
Marianthi-Anna Kiourmourtzoglou
13
2
0
24 Sep 2021
Distiller: A Systematic Study of Model Distillation Methods in Natural Language Processing
Haoyu He
Xingjian Shi
Jonas W. Mueller
Zha Sheng
Mu Li
George Karypis
69
9
0
23 Sep 2021
Enriching and Controlling Global Semantics for Text Summarization
Thong Nguyen
Anh Tuan Luu
Truc Lu
Tho Quan
48
35
0
22 Sep 2021
Active inference, Bayesian optimal design, and expected utility
Noor Sajid
Lancelot Da Costa
Thomas Parr
Karl J. Friston
63
16
0
21 Sep 2021
Deep Learning-Based Estimation and Goodness-of-Fit for Large-Scale Confirmatory Item Factor Analysis
Christopher J. Urban
Daniel J. Bauer
CML
81
1
0
20 Sep 2021
Probabilistic Inference of Simulation Parameters via Parallel Differentiable Simulation
Eric Heiden
Chris Denniston
David Millard
Fabio Ramos
Gaurav Sukhatme
85
22
0
18 Sep 2021
Knowledge is reward: Learning optimal exploration by predictive reward cashing
L. Ambrogioni
29
0
0
17 Sep 2021
Inferential Wasserstein Generative Adversarial Networks
Yao Chen
Qingyi Gao
Xiao Wang
GAN
186
23
0
13 Sep 2021
Bayesian Topic Regression for Causal Inference
M. Ahrens
Julian Ashwin
Jan-Peter Calliess
Vu Nguyen
OOD
CML
BDL
47
9
0
11 Sep 2021
Latent space projection predictive inference
Alejandro Catalina
Paul-Christian Bürkner
Aki Vehtari
BDL
53
11
0
10 Sep 2021
Leveraging Local Domains for Image-to-Image Translation
Anthony DellÉva
Fabio Pizzati
Massimo Bertozzi
Raoul de Charette
89
2
0
09 Sep 2021
Compositional Active Inference I: Bayesian Lenses. Statistical Games
T. S. C. Smithe
68
13
0
09 Sep 2021
Relating Graph Neural Networks to Structural Causal Models
Matej Zečević
Devendra Singh Dhami
Petar Velickovic
Kristian Kersting
AI4CE
CML
134
56
0
09 Sep 2021
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
80
84
0
08 Sep 2021
Latent Space Network Modelling with Hyperbolic and Spherical Geometries
Marios Papamichalis
K. Turnbull
Simón Lunagómez
E. Airoldi
35
1
0
07 Sep 2021
A Biologically Plausible Learning Rule for Perceptual Systems of organisms that Maximize Mutual Information
Tao-Wen Liu
41
0
0
07 Sep 2021
Instance-dependent Label-noise Learning under a Structural Causal Model
Yu Yao
Tongliang Liu
Biwei Huang
Bo Han
Gang Niu
Kun Zhang
CML
NoLa
72
73
0
07 Sep 2021
Data-Driven Wind Turbine Wake Modeling via Probabilistic Machine Learning
Sudharshan Ashwin Renganathan
R. Maulik
S. Letizia
G. Iungo
AI4CE
43
19
0
06 Sep 2021
Stochastic Neural Radiance Fields: Quantifying Uncertainty in Implicit 3D Representations
Jianxiong Shen
Adria Ruiz
Antonio Agudo
Francesc Moreno-Noguer
BDL
131
70
0
05 Sep 2021
Top-N Recommendation with Counterfactual User Preference Simulation
Mengyue Yang
Quanyu Dai
Zhenhua Dong
Xu Chen
Xiuqiang He
Jun Wang
CML
BDL
122
68
0
02 Sep 2021
Task-Oriented Communication for Multi-Device Cooperative Edge Inference
Jiawei Shao
Yuyi Mao
Jun Zhang
116
136
0
01 Sep 2021
A Mathematical Walkthrough and Discussion of the Free Energy Principle
Beren Millidge
A. Seth
Christopher L. Buckley
60
9
0
30 Aug 2021
A theory of representation learning gives a deep generalisation of kernel methods
Adam X. Yang
Maxime Robeyns
Edward Milsom
Ben Anson
Nandi Schoots
Laurence Aitchison
BDL
99
11
0
30 Aug 2021
An Introduction to Variational Inference
Ankush Ganguly
Samuel W. F. Earp
BDL
93
21
0
30 Aug 2021
Variational Inference with NoFAS: Normalizing Flow with Adaptive Surrogate for Computationally Expensive Models
Yu Wang
Fan Liu
Daniele E. Schiavazzi
TPM
BDL
51
14
0
28 Aug 2021
Modeling Item Response Theory with Stochastic Variational Inference
Mike Wu
R. Davis
B. Domingue
Chris Piech
Noah D. Goodman
CML
66
5
0
26 Aug 2021
Variational inference for cutting feedback in misspecified models
Xue Yu
David J. Nott
M. Smith
73
14
0
25 Aug 2021
Layer Adaptive Node Selection in Bayesian Neural Networks: Statistical Guarantees and Implementation Details
Sanket Jantre
Shrijita Bhattacharya
T. Maiti
BDL
88
14
0
25 Aug 2021
Variational Inference at Glacier Scale
D. Brinkerhoff
BDL
59
12
0
16 Aug 2021
Metadata-based Multi-Task Bandits with Bayesian Hierarchical Models
Runzhe Wan
Linjuan Ge
Rui Song
75
29
0
13 Aug 2021
Leveraging Uncertainty for Improved Static Malware Detection Under Extreme False Positive Constraints
A. Nguyen
Edward Raff
Charles K. Nicholas
James Holt
108
22
0
09 Aug 2021
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
138
41
0
09 Aug 2021
Bayesian Deep Learning for Partial Differential Equation Parameter Discovery with Sparse and Noisy Data
Christophe Bonneville
Christopher Earls
96
14
0
05 Aug 2021
A variational Bayesian spatial interaction model for estimating revenue and demand at business facilities
Shanaka Perera
Virginia Aglietti
Theodoros Damoulas
37
1
0
05 Aug 2021
Data-driven modeling of time-domain induced polarization
Charles L. Bérubé
P. Berube
31
3
0
30 Jul 2021
MLMOD: Machine Learning Methods for Data-Driven Modeling in LAMMPS
P. Atzberger
AI4CE
79
0
0
29 Jul 2021
Sparse approximation of triangular transports. Part II: the infinite dimensional case
Jakob Zech
Youssef Marzouk
83
19
0
28 Jul 2021
Predictive and Prescriptive Performance of Bike-Sharing Demand Forecasts for Inventory Management
Daniele Gammelli
Yihua Wang
Dennis Prak
Filipe Rodrigues
Stefan Minner
Francisco Câmara Pereira
AI4TS
49
36
0
28 Jul 2021
Predictive Coding: a Theoretical and Experimental Review
Beren Millidge
A. Seth
Christopher L. Buckley
AI4CE
91
134
0
27 Jul 2021
Generative Models for Security: Attacks, Defenses, and Opportunities
L. A. Bauer
Vincent Bindschaedler
110
4
0
21 Jul 2021
KalmanNet: Neural Network Aided Kalman Filtering for Partially Known Dynamics
Guy Revach
Nir Shlezinger
Xiaoyong Ni
Adrià López Escoriza
Ruud J. G. van Sloun
Yonina C. Eldar
108
293
0
21 Jul 2021
Previous
1
2
3
...
19
20
21
...
35
36
37
Next