ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00670
  4. Cited By
Variational Inference: A Review for Statisticians
v1v2v3v4v5v6v7v8v9 (latest)

Variational Inference: A Review for Statisticians

4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference: A Review for Statisticians"

50 / 1,838 papers shown
Title
Fast methods for posterior inference of two-group normal-normal models
Fast methods for posterior inference of two-group normal-normal models
P. Greengard
J. Hoskins
Charles C.Margossian
Andrew Gelman
Aki Vehtari
52
1
0
06 Oct 2021
Relative Entropy Gradient Sampler for Unnormalized Distributions
Relative Entropy Gradient Sampler for Unnormalized Distributions
Xingdong Feng
Yuan Gao
Jian Huang
Yuling Jiao
Xu Liu
90
7
0
06 Oct 2021
Fast Scalable Image Restoration using Total Variation Priors and
  Expectation Propagation
Fast Scalable Image Restoration using Total Variation Priors and Expectation Propagation
D. Yao
S. Mclaughlin
Y. Altmann
49
6
0
04 Oct 2021
ALBU: An approximate Loopy Belief message passing algorithm for LDA to
  improve performance on small data sets
ALBU: An approximate Loopy Belief message passing algorithm for LDA to improve performance on small data sets
Rebecca M. C. Taylor
J. D. Preez
31
0
0
01 Oct 2021
Variational Marginal Particle Filters
Variational Marginal Particle Filters
Jinlin Lai
Justin Domke
Daniel Sheldon
95
9
0
30 Sep 2021
Variational Inference for Continuous-Time Switching Dynamical Systems
Variational Inference for Continuous-Time Switching Dynamical Systems
Lukas Kohs
Bastian Alt
Heinz Koeppl
91
8
0
29 Sep 2021
An Automated Approach to Causal Inference in Discrete Settings
An Automated Approach to Causal Inference in Discrete Settings
Guilherme Duarte
N. Finkelstein
D. Knox
Jonathan Mummolo
I. Shpitser
96
49
0
28 Sep 2021
Bayesian Transfer Learning: An Overview of Probabilistic Graphical
  Models for Transfer Learning
Bayesian Transfer Learning: An Overview of Probabilistic Graphical Models for Transfer Learning
Junyu Xuan
Jie Lu
Guangquan Zhang
BDL
453
7
0
27 Sep 2021
Anomalous Edge Detection in Edge Exchangeable Social Network Models
Anomalous Edge Detection in Edge Exchangeable Social Network Models
Rui Luo
Buddhika Nettasinghe
Vikram Krishnamurthy
185
18
0
27 Sep 2021
Bayesian non-parametric non-negative matrix factorization for pattern
  identification in environmental mixtures
Bayesian non-parametric non-negative matrix factorization for pattern identification in environmental mixtures
E. Gibson
S. Rowland
Jeff Goldsmith
John Paisley
J. Herbstman
Marianthi-Anna Kiourmourtzoglou
13
2
0
24 Sep 2021
Distiller: A Systematic Study of Model Distillation Methods in Natural
  Language Processing
Distiller: A Systematic Study of Model Distillation Methods in Natural Language Processing
Haoyu He
Xingjian Shi
Jonas W. Mueller
Zha Sheng
Mu Li
George Karypis
69
9
0
23 Sep 2021
Enriching and Controlling Global Semantics for Text Summarization
Enriching and Controlling Global Semantics for Text Summarization
Thong Nguyen
Anh Tuan Luu
Truc Lu
Tho Quan
48
35
0
22 Sep 2021
Active inference, Bayesian optimal design, and expected utility
Active inference, Bayesian optimal design, and expected utility
Noor Sajid
Lancelot Da Costa
Thomas Parr
Karl J. Friston
63
16
0
21 Sep 2021
Deep Learning-Based Estimation and Goodness-of-Fit for Large-Scale
  Confirmatory Item Factor Analysis
Deep Learning-Based Estimation and Goodness-of-Fit for Large-Scale Confirmatory Item Factor Analysis
Christopher J. Urban
Daniel J. Bauer
CML
81
1
0
20 Sep 2021
Probabilistic Inference of Simulation Parameters via Parallel
  Differentiable Simulation
Probabilistic Inference of Simulation Parameters via Parallel Differentiable Simulation
Eric Heiden
Chris Denniston
David Millard
Fabio Ramos
Gaurav Sukhatme
85
22
0
18 Sep 2021
Knowledge is reward: Learning optimal exploration by predictive reward
  cashing
Knowledge is reward: Learning optimal exploration by predictive reward cashing
L. Ambrogioni
29
0
0
17 Sep 2021
Inferential Wasserstein Generative Adversarial Networks
Inferential Wasserstein Generative Adversarial Networks
Yao Chen
Qingyi Gao
Xiao Wang
GAN
186
23
0
13 Sep 2021
Bayesian Topic Regression for Causal Inference
Bayesian Topic Regression for Causal Inference
M. Ahrens
Julian Ashwin
Jan-Peter Calliess
Vu Nguyen
OODCMLBDL
47
9
0
11 Sep 2021
Latent space projection predictive inference
Latent space projection predictive inference
Alejandro Catalina
Paul-Christian Bürkner
Aki Vehtari
BDL
53
11
0
10 Sep 2021
Leveraging Local Domains for Image-to-Image Translation
Leveraging Local Domains for Image-to-Image Translation
Anthony DellÉva
Fabio Pizzati
Massimo Bertozzi
Raoul de Charette
89
2
0
09 Sep 2021
Compositional Active Inference I: Bayesian Lenses. Statistical Games
Compositional Active Inference I: Bayesian Lenses. Statistical Games
T. S. C. Smithe
68
13
0
09 Sep 2021
Relating Graph Neural Networks to Structural Causal Models
Relating Graph Neural Networks to Structural Causal Models
Matej Zečević
Devendra Singh Dhami
Petar Velickovic
Kristian Kersting
AI4CECML
134
56
0
09 Sep 2021
Desiderata for Representation Learning: A Causal Perspective
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
80
84
0
08 Sep 2021
Latent Space Network Modelling with Hyperbolic and Spherical Geometries
Latent Space Network Modelling with Hyperbolic and Spherical Geometries
Marios Papamichalis
K. Turnbull
Simón Lunagómez
E. Airoldi
35
1
0
07 Sep 2021
A Biologically Plausible Learning Rule for Perceptual Systems of
  organisms that Maximize Mutual Information
A Biologically Plausible Learning Rule for Perceptual Systems of organisms that Maximize Mutual Information
Tao-Wen Liu
41
0
0
07 Sep 2021
Instance-dependent Label-noise Learning under a Structural Causal Model
Instance-dependent Label-noise Learning under a Structural Causal Model
Yu Yao
Tongliang Liu
Biwei Huang
Bo Han
Gang Niu
Kun Zhang
CMLNoLa
72
73
0
07 Sep 2021
Data-Driven Wind Turbine Wake Modeling via Probabilistic Machine
  Learning
Data-Driven Wind Turbine Wake Modeling via Probabilistic Machine Learning
Sudharshan Ashwin Renganathan
R. Maulik
S. Letizia
G. Iungo
AI4CE
43
19
0
06 Sep 2021
Stochastic Neural Radiance Fields: Quantifying Uncertainty in Implicit
  3D Representations
Stochastic Neural Radiance Fields: Quantifying Uncertainty in Implicit 3D Representations
Jianxiong Shen
Adria Ruiz
Antonio Agudo
Francesc Moreno-Noguer
BDL
131
70
0
05 Sep 2021
Top-N Recommendation with Counterfactual User Preference Simulation
Top-N Recommendation with Counterfactual User Preference Simulation
Mengyue Yang
Quanyu Dai
Zhenhua Dong
Xu Chen
Xiuqiang He
Jun Wang
CMLBDL
122
68
0
02 Sep 2021
Task-Oriented Communication for Multi-Device Cooperative Edge Inference
Task-Oriented Communication for Multi-Device Cooperative Edge Inference
Jiawei Shao
Yuyi Mao
Jun Zhang
116
136
0
01 Sep 2021
A Mathematical Walkthrough and Discussion of the Free Energy Principle
A Mathematical Walkthrough and Discussion of the Free Energy Principle
Beren Millidge
A. Seth
Christopher L. Buckley
60
9
0
30 Aug 2021
A theory of representation learning gives a deep generalisation of
  kernel methods
A theory of representation learning gives a deep generalisation of kernel methods
Adam X. Yang
Maxime Robeyns
Edward Milsom
Ben Anson
Nandi Schoots
Laurence Aitchison
BDL
99
11
0
30 Aug 2021
An Introduction to Variational Inference
An Introduction to Variational Inference
Ankush Ganguly
Samuel W. F. Earp
BDL
93
21
0
30 Aug 2021
Variational Inference with NoFAS: Normalizing Flow with Adaptive
  Surrogate for Computationally Expensive Models
Variational Inference with NoFAS: Normalizing Flow with Adaptive Surrogate for Computationally Expensive Models
Yu Wang
Fan Liu
Daniele E. Schiavazzi
TPMBDL
51
14
0
28 Aug 2021
Modeling Item Response Theory with Stochastic Variational Inference
Modeling Item Response Theory with Stochastic Variational Inference
Mike Wu
R. Davis
B. Domingue
Chris Piech
Noah D. Goodman
CML
66
5
0
26 Aug 2021
Variational inference for cutting feedback in misspecified models
Variational inference for cutting feedback in misspecified models
Xue Yu
David J. Nott
M. Smith
73
14
0
25 Aug 2021
Layer Adaptive Node Selection in Bayesian Neural Networks: Statistical
  Guarantees and Implementation Details
Layer Adaptive Node Selection in Bayesian Neural Networks: Statistical Guarantees and Implementation Details
Sanket Jantre
Shrijita Bhattacharya
T. Maiti
BDL
88
14
0
25 Aug 2021
Variational Inference at Glacier Scale
Variational Inference at Glacier Scale
D. Brinkerhoff
BDL
59
12
0
16 Aug 2021
Metadata-based Multi-Task Bandits with Bayesian Hierarchical Models
Metadata-based Multi-Task Bandits with Bayesian Hierarchical Models
Runzhe Wan
Linjuan Ge
Rui Song
75
29
0
13 Aug 2021
Leveraging Uncertainty for Improved Static Malware Detection Under
  Extreme False Positive Constraints
Leveraging Uncertainty for Improved Static Malware Detection Under Extreme False Positive Constraints
A. Nguyen
Edward Raff
Charles K. Nicholas
James Holt
108
22
0
09 Aug 2021
Pathfinder: Parallel quasi-Newton variational inference
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
138
41
0
09 Aug 2021
Bayesian Deep Learning for Partial Differential Equation Parameter
  Discovery with Sparse and Noisy Data
Bayesian Deep Learning for Partial Differential Equation Parameter Discovery with Sparse and Noisy Data
Christophe Bonneville
Christopher Earls
96
14
0
05 Aug 2021
A variational Bayesian spatial interaction model for estimating revenue
  and demand at business facilities
A variational Bayesian spatial interaction model for estimating revenue and demand at business facilities
Shanaka Perera
Virginia Aglietti
Theodoros Damoulas
37
1
0
05 Aug 2021
Data-driven modeling of time-domain induced polarization
Data-driven modeling of time-domain induced polarization
Charles L. Bérubé
P. Berube
31
3
0
30 Jul 2021
MLMOD: Machine Learning Methods for Data-Driven Modeling in LAMMPS
MLMOD: Machine Learning Methods for Data-Driven Modeling in LAMMPS
P. Atzberger
AI4CE
79
0
0
29 Jul 2021
Sparse approximation of triangular transports. Part II: the infinite
  dimensional case
Sparse approximation of triangular transports. Part II: the infinite dimensional case
Jakob Zech
Youssef Marzouk
83
19
0
28 Jul 2021
Predictive and Prescriptive Performance of Bike-Sharing Demand Forecasts
  for Inventory Management
Predictive and Prescriptive Performance of Bike-Sharing Demand Forecasts for Inventory Management
Daniele Gammelli
Yihua Wang
Dennis Prak
Filipe Rodrigues
Stefan Minner
Francisco Câmara Pereira
AI4TS
49
36
0
28 Jul 2021
Predictive Coding: a Theoretical and Experimental Review
Predictive Coding: a Theoretical and Experimental Review
Beren Millidge
A. Seth
Christopher L. Buckley
AI4CE
91
134
0
27 Jul 2021
Generative Models for Security: Attacks, Defenses, and Opportunities
Generative Models for Security: Attacks, Defenses, and Opportunities
L. A. Bauer
Vincent Bindschaedler
110
4
0
21 Jul 2021
KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
  Dynamics
KalmanNet: Neural Network Aided Kalman Filtering for Partially Known Dynamics
Guy Revach
Nir Shlezinger
Xiaoyong Ni
Adrià López Escoriza
Ruud J. G. van Sloun
Yonina C. Eldar
108
293
0
21 Jul 2021
Previous
123...192021...353637
Next