ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.05770
  4. Cited By
Variational Inference with Normalizing Flows
v1v2v3v4v5v6 (latest)

Variational Inference with Normalizing Flows

21 May 2015
Danilo Jimenez Rezende
S. Mohamed
    DRLBDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference with Normalizing Flows"

50 / 2,268 papers shown
Title
Towards creativity characterization of generative models via group-based
  subset scanning
Towards creativity characterization of generative models via group-based subset scanning
C. Cintas
Payel Das
Brian Quanz
Skyler Speakman
Victor Akinwande
Pin-Yu Chen
24
11
0
01 Apr 2021
Qualitative Planning in Imperfect Information Games with Active Sensing
  and Reactive Sensor Attacks: Cost of Unawareness
Qualitative Planning in Imperfect Information Games with Active Sensing and Reactive Sensor Attacks: Cost of Unawareness
A. Kulkarni
Shuo Han
Nandi O. Leslie
Charles A. Kamhoua
Jie Fu
47
2
0
01 Apr 2021
Trusted Artificial Intelligence: Towards Certification of Machine
  Learning Applications
Trusted Artificial Intelligence: Towards Certification of Machine Learning Applications
P. M. Winter
Sebastian K. Eder
J. Weissenbock
Christoph Schwald
Thomas Doms
Tom Vogt
Sepp Hochreiter
Bernhard Nessler
113
25
0
31 Mar 2021
PixelTransformer: Sample Conditioned Signal Generation
PixelTransformer: Sample Conditioned Signal Generation
Shubham Tulsiani
Abhinav Gupta
76
17
0
29 Mar 2021
Rapid Risk Minimization with Bayesian Models Through Deep Learning
  Approximation
Rapid Risk Minimization with Bayesian Models Through Deep Learning Approximation
Mathias Löwe
Per Lunnemann Hansen
S. Risi
BDL
9
1
0
29 Mar 2021
Variational Rejection Particle Filtering
Variational Rejection Particle Filtering
Rahul Sharma
S. Banerjee
Dootika Vats
Piyush Rai
BDL
71
0
0
29 Mar 2021
Improved Autoregressive Modeling with Distribution Smoothing
Improved Autoregressive Modeling with Distribution Smoothing
Chenlin Meng
Jiaming Song
Yang Song
Shengjia Zhao
Stefano Ermon
DiffM
76
23
0
28 Mar 2021
AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent
  Forecasting
AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting
Ye Yuan
Xinshuo Weng
Yanglan Ou
Kris Kitani
AI4TS
114
461
0
25 Mar 2021
Out-of-Distribution Detection of Melanoma using Normalizing Flows
Out-of-Distribution Detection of Melanoma using Normalizing Flows
M. Valiuddin
C.G.A. Viviers
OODD
48
0
0
23 Mar 2021
Implicit Normalizing Flows
Implicit Normalizing Flows
Cheng Lu
Jianfei Chen
Chongxuan Li
Qiuhao Wang
Jun Zhu
AI4CE
72
34
0
17 Mar 2021
Improving Zero-shot Voice Style Transfer via Disentangled Representation
  Learning
Improving Zero-shot Voice Style Transfer via Disentangled Representation Learning
Siyang Yuan
Pengyu Cheng
Ruiyi Zhang
Weituo Hao
Zhe Gan
Lawrence Carin
DRL
74
61
0
17 Mar 2021
Continuous normalizing flows on manifolds
Continuous normalizing flows on manifolds
Luca Falorsi
BDLAI4CE
77
10
0
14 Mar 2021
VCNet and Functional Targeted Regularization For Learning Causal Effects
  of Continuous Treatments
VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments
Lizhen Nie
Mao Ye
Qiang Liu
D. Nicolae
CML
77
71
0
14 Mar 2021
VDSM: Unsupervised Video Disentanglement with State-Space Modeling and
  Deep Mixtures of Experts
VDSM: Unsupervised Video Disentanglement with State-Space Modeling and Deep Mixtures of Experts
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CoGe
87
8
0
12 Mar 2021
Variational inference with a quantum computer
Variational inference with a quantum computer
Marcello Benedetti
Brian Coyle
Mattia Fiorentini
M. Lubasch
Matthias Rosenkranz
BDL
83
38
0
11 Mar 2021
Universal Approximation of Residual Flows in Maximum Mean Discrepancy
Universal Approximation of Residual Flows in Maximum Mean Discrepancy
Zhifeng Kong
Kamalika Chaudhuri
UQCV
42
6
0
10 Mar 2021
A prior-based approximate latent Riemannian metric
A prior-based approximate latent Riemannian metric
Georgios Arvanitidis
B. Georgiev
Bernhard Schölkopf
MedIm
63
13
0
09 Mar 2021
An Introduction to Deep Generative Modeling
An Introduction to Deep Generative Modeling
Lars Ruthotto
E. Haber
AI4CE
118
232
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLMTPM
176
511
0
08 Mar 2021
Combining Interventional and Observational Data Using Causal Reductions
Combining Interventional and Observational Data Using Causal Reductions
Maximilian Ilse
Patrick Forré
Max Welling
Joris M. Mooij
OODCML
59
0
0
08 Mar 2021
Generating Images with Sparse Representations
Generating Images with Sparse Representations
C. Nash
Jacob Menick
Sander Dieleman
Peter W. Battaglia
93
211
0
05 Mar 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
155
305
0
03 Mar 2021
Diffusion Probabilistic Models for 3D Point Cloud Generation
Diffusion Probabilistic Models for 3D Point Cloud Generation
Shitong Luo
Wei Hu
3DPC
275
750
0
02 Mar 2021
Generative Particle Variational Inference via Estimation of Functional
  Gradients
Generative Particle Variational Inference via Estimation of Functional Gradients
Neale Ratzlaff
Qinxun Bai
Fuxin Li
Wenyuan Xu
BDLDRL
123
0
0
01 Mar 2021
Challenges and Opportunities in High-dimensional Variational Inference
Challenges and Opportunities in High-dimensional Variational Inference
Akash Kumar Dhaka
Alejandro Catalina
Manushi K. V. Welandawe
Michael Riis Andersen
Jonathan H. Huggins
Aki Vehtari
60
42
0
01 Mar 2021
A survey on Variational Autoencoders from a GreenAI perspective
A survey on Variational Autoencoders from a GreenAI perspective
Andrea Asperti
David Evangelista
E. Loli Piccolomini
DRL
91
53
0
01 Mar 2021
Countering Malicious DeepFakes: Survey, Battleground, and Horizon
Countering Malicious DeepFakes: Survey, Battleground, and Horizon
Felix Juefei Xu
Run Wang
Yihao Huang
Qing Guo
Lei Ma
Yang Liu
AAML
110
138
0
27 Feb 2021
A Hybrid Approximation to the Marginal Likelihood
A Hybrid Approximation to the Marginal Likelihood
Eric Chuu
D. Pati
A. Bhattacharya
39
2
0
24 Feb 2021
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Yangjun Ruan
Karen Ullrich
Daniel de Souza Severo
James Townsend
Ashish Khisti
Arnaud Doucet
Alireza Makhzani
Chris J. Maddison
110
25
0
22 Feb 2021
Learning Neural Generative Dynamics for Molecular Conformation
  Generation
Learning Neural Generative Dynamics for Molecular Conformation Generation
Minkai Xu
Shitong Luo
Yoshua Bengio
Jian-wei Peng
Jian Tang
AI4CE
118
119
0
20 Feb 2021
Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal
  Memory
Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal Memory
Takashi Matsubara
Yuto Miyatake
Takaharu Yaguchi
64
23
0
19 Feb 2021
Convolutional Normalization
Convolutional Normalization
M. Esposito
Nader Ganaba
65
0
0
19 Feb 2021
AudioVisual Speech Synthesis: A brief literature review
AudioVisual Speech Synthesis: A brief literature review
Efthymios Georgiou
Athanasios Katsamanis
25
0
0
18 Feb 2021
VAE Approximation Error: ELBO and Exponential Families
VAE Approximation Error: ELBO and Exponential Families
Alexander Shekhovtsov
D. Schlesinger
B. Flach
DRL
70
16
0
18 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PERUQLMUQCVUD
321
94
0
16 Feb 2021
Hierarchical VAEs Know What They Don't Know
Hierarchical VAEs Know What They Don't Know
Jakob Drachmann Havtorn
J. Frellsen
Søren Hauberg
Lars Maaløe
DRL
116
74
0
16 Feb 2021
Structured Dropout Variational Inference for Bayesian Neural Networks
Structured Dropout Variational Inference for Bayesian Neural Networks
S. Nguyen
Duong Nguyen
Khai Nguyen
Khoat Than
Hung Bui
Nhat Ho
BDLDRL
70
8
0
16 Feb 2021
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
95
78
0
15 Feb 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
47
8
0
12 Feb 2021
Sequential Neural Posterior and Likelihood Approximation
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
456
33
0
12 Feb 2021
Disentangled Representations from Non-Disentangled Models
Disentangled Representations from Non-Disentangled Models
Valentin Khrulkov
L. Mirvakhabova
Ivan Oseledets
Artem Babenko
OCLDRLCoGe
59
15
0
11 Feb 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
308
429
0
10 Feb 2021
Automatic variational inference with cascading flows
Automatic variational inference with cascading flows
L. Ambrogioni
Gianluigi Silvestri
Marcel van Gerven
TPMBDL
51
10
0
09 Feb 2021
Neural SDEs as Infinite-Dimensional GANs
Neural SDEs as Infinite-Dimensional GANs
Patrick Kidger
James Foster
Xuechen Li
Harald Oberhauser
Terry Lyons
DiffM
74
154
0
06 Feb 2021
Invertible DenseNets with Concatenated LipSwish
Invertible DenseNets with Concatenated LipSwish
Yura Perugachi-Diaz
Jakub M. Tomczak
Sandjai Bhulai
137
20
0
04 Feb 2021
Bayesian multiscale deep generative model for the solution of
  high-dimensional inverse problems
Bayesian multiscale deep generative model for the solution of high-dimensional inverse problems
Yin Xia
N. Zabaras
56
24
0
04 Feb 2021
Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC
Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC
P. Jaini
Didrik Nielsen
Max Welling
BDL
94
10
0
04 Feb 2021
A Living Review of Machine Learning for Particle Physics
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELMAI4CE
93
182
0
02 Feb 2021
GraphDF: A Discrete Flow Model for Molecular Graph Generation
GraphDF: A Discrete Flow Model for Molecular Graph Generation
Youzhi Luo
Keqiang Yan
Shuiwang Ji
DRL
267
200
0
01 Feb 2021
Neural representation and generation for RNA secondary structures
Neural representation and generation for RNA secondary structures
Zichao Yan
William L. Hamilton
Mathieu Blanchette
62
3
0
01 Feb 2021
Previous
123...313233...444546
Next