ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.05770
  4. Cited By
Variational Inference with Normalizing Flows
v1v2v3v4v5v6 (latest)

Variational Inference with Normalizing Flows

21 May 2015
Danilo Jimenez Rezende
S. Mohamed
    DRLBDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference with Normalizing Flows"

50 / 2,268 papers shown
Title
Tighter Variational Bounds are Not Necessarily Better
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
212
198
0
13 Feb 2018
Black-box Variational Inference for Stochastic Differential Equations
Black-box Variational Inference for Stochastic Differential Equations
Tom Ryder
Andrew Golightly
A. Mcgough
D. Prangle
91
58
0
09 Feb 2018
Neural Network Renormalization Group
Neural Network Renormalization Group
Shuo-Hui Li
Lei Wang
BDLDRL
112
125
0
08 Feb 2018
Semi-Amortized Variational Autoencoders
Semi-Amortized Variational Autoencoders
Yoon Kim
Sam Wiseman
Andrew C. Miller
David Sontag
Alexander M. Rush
BDLDRL
172
243
0
07 Feb 2018
Improving Variational Encoder-Decoders in Dialogue Generation
Improving Variational Encoder-Decoders in Dialogue Generation
Xiaoyu Shen
Hui Su
Shuzi Niu
Vera Demberg
DRL
92
99
0
06 Feb 2018
Inference Suboptimality in Variational Autoencoders
Inference Suboptimality in Variational Autoencoders
Chris Cremer
Xuechen Li
David Duvenaud
DRLBDL
137
283
0
10 Jan 2018
Generating Neural Networks with Neural Networks
Generating Neural Networks with Neural Networks
Lior Deutsch
105
21
0
06 Jan 2018
PixelSNAIL: An Improved Autoregressive Generative Model
PixelSNAIL: An Improved Autoregressive Generative Model
Xi Chen
Nikhil Mishra
Mostafa Rohaninejad
Pieter Abbeel
DRLDiffMBDLGAN
80
276
0
28 Dec 2017
Improvements to Inference Compilation for Probabilistic Programming in
  Large-Scale Scientific Simulators
Improvements to Inference Compilation for Probabilistic Programming in Large-Scale Scientific Simulators
Mario Lezcano Casado
A. G. Baydin
David Martínez-Rubio
T. Le
Frank Wood
...
Gilles Louppe
Kyle Cranmer
Karen Ng
W. Bhimji
P. Prabhat
166
9
0
21 Dec 2017
Deep generative models of genetic variation capture mutation effects
Deep generative models of genetic variation capture mutation effects
Adam J. Riesselman
John Ingraham
D. Marks
DRLBDL
50
23
0
18 Dec 2017
GibbsNet: Iterative Adversarial Inference for Deep Graphical Models
GibbsNet: Iterative Adversarial Inference for Deep Graphical Models
Alex Lamb
R. Devon Hjelm
Yaroslav Ganin
Joseph Paul Cohen
Aaron Courville
Yoshua Bengio
GAN
72
13
0
12 Dec 2017
Noisy Natural Gradient as Variational Inference
Noisy Natural Gradient as Variational Inference
Guodong Zhang
Shengyang Sun
David Duvenaud
Roger C. Grosse
ODL
102
212
0
06 Dec 2017
Stochastic Maximum Likelihood Optimization via Hypernetworks
Stochastic Maximum Likelihood Optimization via Hypernetworks
Abdul-Saboor Sheikh
Kashif Rasul
A. Merentitis
Urs M. Bergmann
109
18
0
04 Dec 2017
Faithful Inversion of Generative Models for Effective Amortized
  Inference
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank Wood
TPM
134
47
0
01 Dec 2017
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
65
67
0
30 Nov 2017
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Aaron van den Oord
Yazhe Li
Igor Babuschkin
Karen Simonyan
Oriol Vinyals
...
Alex Graves
Helen King
T. Walters
Dan Belov
Demis Hassabis
233
859
0
28 Nov 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
236
698
0
15 Nov 2017
Variational Adaptive-Newton Method for Explorative Learning
Variational Adaptive-Newton Method for Explorative Learning
Mohammad Emtiyaz Khan
Wu Lin
Voot Tangkaratt
Zuozhu Liu
Didrik Nielsen
ODL
86
20
0
15 Nov 2017
Z-Forcing: Training Stochastic Recurrent Networks
Z-Forcing: Training Stochastic Recurrent Networks
Anirudh Goyal
Alessandro Sordoni
Marc-Alexandre Côté
Nan Rosemary Ke
Yoshua Bengio
BDL
93
186
0
15 Nov 2017
Adversarial Symmetric Variational Autoencoder
Adversarial Symmetric Variational Autoencoder
Yunchen Pu
Weiyao Wang
Ricardo Henao
Liqun Chen
Zhe Gan
Chunyuan Li
Lawrence Carin
DRLGAN
97
78
0
14 Nov 2017
Neural Variational Inference and Learning in Undirected Graphical Models
Neural Variational Inference and Learning in Undirected Graphical Models
Volodymyr Kuleshov
Stefano Ermon
BDL
69
34
0
07 Nov 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDLSSLOCL
257
5,093
0
02 Nov 2017
Fixing a Broken ELBO
Fixing a Broken ELBO
Alexander A. Alemi
Ben Poole
Ian S. Fischer
Joshua V. Dillon
Rif A. Saurous
Kevin Patrick Murphy
DRLBDL
101
80
0
01 Nov 2017
Latent Space Oddity: on the Curvature of Deep Generative Models
Latent Space Oddity: on the Curvature of Deep Generative Models
Georgios Arvanitidis
Lars Kai Hansen
Søren Hauberg
DRL
135
271
0
31 Oct 2017
On the challenges of learning with inference networks on sparse,
  high-dimensional data
On the challenges of learning with inference networks on sparse, high-dimensional data
Rahul G. Krishnan
Dawen Liang
Matthew Hoffman
CMLBDL
87
85
0
17 Oct 2017
Unsupervised Real-Time Control through Variational Empowerment
Unsupervised Real-Time Control through Variational Empowerment
Maximilian Karl
Maximilian Soelch
Philip Becker-Ehmck
Djalel Benbouzid
Patrick van der Smagt
Justin Bayer
78
55
0
13 Oct 2017
Bayesian Hypernetworks
Bayesian Hypernetworks
David M. Krueger
Chin-Wei Huang
Riashat Islam
Ryan Turner
Alexandre Lacoste
Aaron Courville
UQCVBDL
82
139
0
13 Oct 2017
Learnable Explicit Density for Continuous Latent Space and Variational
  Inference
Learnable Explicit Density for Continuous Latent Space and Variational Inference
Chin-Wei Huang
Ahmed Touati
Laurent Dinh
M. Drozdzal
Mohammad Havaei
Laurent Charlin
Aaron Courville
BDLDRL
94
28
0
06 Oct 2017
Variational Memory Addressing in Generative Models
Variational Memory Addressing in Generative Models
J. Bornschein
A. Mnih
Daniel Zoran
Danilo Jimenez Rezende
BDL
89
63
0
21 Sep 2017
ZhuSuan: A Library for Bayesian Deep Learning
ZhuSuan: A Library for Bayesian Deep Learning
Jiaxin Shi
Jianfei Chen
Jun Zhu
Shengyang Sun
Yucen Luo
Yihong Gu
Yuhao Zhou
UQCVBDL
82
43
0
18 Sep 2017
Disentangled Variational Auto-Encoder for Semi-supervised Learning
Disentangled Variational Auto-Encoder for Semi-supervised Learning
Yang Li
Quan Pan
Suhang Wang
Haiyun Peng
Tao Yang
Min Zhang
DRL
69
88
0
15 Sep 2017
Symmetric Variational Autoencoder and Connections to Adversarial
  Learning
Symmetric Variational Autoencoder and Connections to Adversarial Learning
Liqun Chen
Shuyang Dai
Yunchen Pu
Chunyuan Li
Weiyao Wang
Lawrence Carin
DRLGAN
109
71
0
06 Sep 2017
Unsupervised Generative Modeling Using Matrix Product States
Unsupervised Generative Modeling Using Matrix Product States
Zhaoyu Han
Jun Wang
H. Fan
Lei Wang
Pan Zhang
144
273
0
06 Sep 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
129
57
0
04 Sep 2017
Learning Model Reparametrizations: Implicit Variational Inference by
  Fitting MCMC distributions
Learning Model Reparametrizations: Implicit Variational Inference by Fitting MCMC distributions
Michalis K. Titsias
BDL
80
23
0
04 Aug 2017
Learning to Draw Samples with Amortized Stein Variational Gradient
  Descent
Learning to Draw Samples with Amortized Stein Variational Gradient Descent
Yihao Feng
Dilin Wang
Qiang Liu
GANBDL
85
82
0
20 Jul 2017
A causal framework for explaining the predictions of black-box
  sequence-to-sequence models
A causal framework for explaining the predictions of black-box sequence-to-sequence models
David Alvarez-Melis
Tommi Jaakkola
CML
368
206
0
06 Jul 2017
Bayesian Semisupervised Learning with Deep Generative Models
Bayesian Semisupervised Learning with Deep Generative Models
Jonathan Gordon
José Miguel Hernández-Lobato
BDLUQCVGAN
75
27
0
29 Jun 2017
Dr.VAE: Drug Response Variational Autoencoder
Dr.VAE: Drug Response Variational Autoencoder
Ladislav Rampášek
Daniel Hidru
P. Smirnov
B. Haibe-Kains
Anna Goldenberg
DRL
54
32
0
26 Jun 2017
A-NICE-MC: Adversarial Training for MCMC
A-NICE-MC: Adversarial Training for MCMC
Jiaming Song
Shengjia Zhao
Stefano Ermon
BDLOOD
127
110
0
23 Jun 2017
A Divergence Bound for Hybrids of MCMC and Variational Inference and an
  Application to Langevin Dynamics and SGVI
A Divergence Bound for Hybrids of MCMC and Variational Inference and an Application to Langevin Dynamics and SGVI
Justin Domke
BDL
80
6
0
20 Jun 2017
Adversarially Regularized Autoencoders
Adversarially Regularized Autoencoders
Jiaqi Zhao
Yoon Kim
Kelly Zhang
Alexander M. Rush
Yann LeCun
DRLGNNGAN
75
78
0
13 Jun 2017
Channel-Recurrent Autoencoding for Image Modeling
Channel-Recurrent Autoencoding for Image Modeling
Wenling Shang
Kihyuk Sohn
Yuandong Tian
DRLGAN
27
3
0
12 Jun 2017
Tackling Over-pruning in Variational Autoencoders
Tackling Over-pruning in Variational Autoencoders
Serena Yeung
A. Kannan
Yann N. Dauphin
Li Fei-Fei
DRL
179
63
0
09 Jun 2017
Improving Variational Auto-Encoders using convex combination linear
  Inverse Autoregressive Flow
Improving Variational Auto-Encoders using convex combination linear Inverse Autoregressive Flow
Jakub M. Tomczak
Max Welling
DRL
85
24
0
07 Jun 2017
DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data
DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data
Swaminathan Gurumurthy
Ravi Kiran Sarvadevabhatla
R. Venkatesh Babu
GAN
101
272
0
07 Jun 2017
Variational Sequential Monte Carlo
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
307
215
0
31 May 2017
Surface Networks
Surface Networks
Ilya Kostrikov
Zhongshi Jiang
Daniele Panozzo
Denis Zorin
Joan Bruna
89
101
0
30 May 2017
Kernel Implicit Variational Inference
Kernel Implicit Variational Inference
Jiaxin Shi
Shengyang Sun
Jun Zhu
BDL
96
3
0
29 May 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
262
210
0
25 May 2017
Previous
123...43444546
Next