ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.05770
  4. Cited By
Variational Inference with Normalizing Flows
v1v2v3v4v5v6 (latest)

Variational Inference with Normalizing Flows

21 May 2015
Danilo Jimenez Rezende
S. Mohamed
    DRLBDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference with Normalizing Flows"

50 / 2,269 papers shown
Title
Rectangular Flows for Manifold Learning
Rectangular Flows for Manifold Learning
Anthony L. Caterini
Gabriel Loaiza-Ganem
Geoff Pleiss
John P. Cunningham
DRL
111
47
0
02 Jun 2021
Latent Space Refinement for Deep Generative Models
Latent Space Refinement for Deep Generative Models
R. Winterhalder
Marco Bellagente
Benjamin Nachman
BDLGANDRLDiffM
126
27
0
01 Jun 2021
Fourier Space Losses for Efficient Perceptual Image Super-Resolution
Fourier Space Losses for Efficient Perceptual Image Super-Resolution
Dario Fuoli
Luc Van Gool
Radu Timofte
102
123
0
01 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
109
57
0
01 Jun 2021
Large-Scale Wasserstein Gradient Flows
Large-Scale Wasserstein Gradient Flows
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
103
76
0
01 Jun 2021
IID-GAN: an IID Sampling Perspective for Regularizing Mode Collapse
IID-GAN: an IID Sampling Perspective for Regularizing Mode Collapse
Yang Li
Liangliang Shi
Junchi Yan
GAN
40
7
0
01 Jun 2021
Transformation Models for Flexible Posteriors in Variational Bayes
Transformation Models for Flexible Posteriors in Variational Bayes
Sefan Hörtling
Daniel Dold
Oliver Durr
Beate Sick
45
0
0
01 Jun 2021
Hybrid Generative Models for Two-Dimensional Datasets
Hybrid Generative Models for Two-Dimensional Datasets
Hoda Shajari
Jaemoon Lee
Sanjay Ranka
Anand Rangarajan
MedIm
120
0
0
01 Jun 2021
Parallelized Computation and Backpropagation Under Angle-Parametrized
  Orthogonal Matrices
Parallelized Computation and Backpropagation Under Angle-Parametrized Orthogonal Matrices
F. Hamze
54
1
0
30 May 2021
Deconvolutional Density Network: Modeling Free-Form Conditional
  Distributions
Deconvolutional Density Network: Modeling Free-Form Conditional Distributions
Bing Chen
Mazharul Islam
Jisuo Gao
Lin Wang
BDLCML
72
7
0
29 May 2021
The Dark Machines Anomaly Score Challenge: Benchmark Data and Model
  Independent Event Classification for the Large Hadron Collider
The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider
T. Aarrestad
M. Beekveld
M. Bona
A. Boveia
S. Caron
...
M. White
E. Wulff
E. Wallin
K. Wozniak
Z. Zhang
95
83
0
28 May 2021
A Probabilistic Forecast-Driven Strategy for a Risk-Aware Participation
  in the Capacity Firming Market: extended version
A Probabilistic Forecast-Driven Strategy for a Risk-Aware Participation in the Capacity Firming Market: extended version
Jonathan Dumas
Colin Cointe
Antoine Wehenkel
Antonio Sutera
X. Fettweis
Bertrand Cornélusse
25
9
0
28 May 2021
Augmented KRnet for density estimation and approximation
Augmented KRnet for density estimation and approximation
Xiaoliang Wan
Keju Tang
69
5
0
26 May 2021
Density estimation on low-dimensional manifolds: an inflation-deflation
  approach
Density estimation on low-dimensional manifolds: an inflation-deflation approach
Christian Horvat
J. Pfister
78
15
0
25 May 2021
Geometric variational inference
Geometric variational inference
Philipp Frank
R. Leike
T. Ensslin
76
24
0
21 May 2021
Variational Gaussian Topic Model with Invertible Neural Projections
Variational Gaussian Topic Model with Invertible Neural Projections
Rui Wang
Deyu Zhou
Yuxuan Xiong
Haiping Huang
BDL
66
3
0
21 May 2021
Monte Carlo Filtering Objectives: A New Family of Variational Objectives
  to Learn Generative Model and Neural Adaptive Proposal for Time Series
Monte Carlo Filtering Objectives: A New Family of Variational Objectives to Learn Generative Model and Neural Adaptive Proposal for Time Series
Shuangshuang Chen
Sihao Ding
Y. Karayiannidis
Mårten Björkman
BDLAI4TS
47
2
0
20 May 2021
Boosting Variational Inference With Locally Adaptive Step-Sizes
Boosting Variational Inference With Locally Adaptive Step-Sizes
Gideon Dresdner
Saurav Shekhar
Fabian Pedregosa
Francesco Locatello
Gunnar Rätsch
43
2
0
19 May 2021
E(n) Equivariant Normalizing Flows
E(n) Equivariant Normalizing Flows
Victor Garcia Satorras
Emiel Hoogeboom
F. Fuchs
Ingmar Posner
Max Welling
BDL
113
182
0
19 May 2021
StackVAE-G: An efficient and interpretable model for time series anomaly
  detection
StackVAE-G: An efficient and interpretable model for time series anomaly detection
Wenkai Li
Wenbo Hu
Ting Chen
Ning Chen
Cheng Feng
BDLAI4TS
28
6
0
18 May 2021
Unsupervised Deep Learning Methods for Biological Image Reconstruction
  and Enhancement
Unsupervised Deep Learning Methods for Biological Image Reconstruction and Enhancement
Mehmet Akccakaya
Burhaneddin Yaman
Hyungjin Chung
Jong Chul Ye
MedIm
110
56
0
17 May 2021
Mean Field Games Flock! The Reinforcement Learning Way
Mean Field Games Flock! The Reinforcement Learning Way
Sarah Perrin
Mathieu Laurière
Julien Pérolat
Matthieu Geist
Romuald Élie
Olivier Pietquin
AI4CE
76
47
0
17 May 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCVBDL
139
134
0
14 May 2021
Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech
Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech
Vadim Popov
Ivan Vovk
Vladimir Gogoryan
Tasnima Sadekova
Mikhail Kudinov
DiffM
117
544
0
13 May 2021
Multiscale Invertible Generative Networks for High-Dimensional Bayesian
  Inference
Multiscale Invertible Generative Networks for High-Dimensional Bayesian Inference
Shumao Zhang
Pengchuan Zhang
T. Hou
BDL
71
5
0
12 May 2021
NF-iSAM: Incremental Smoothing and Mapping via Normalizing Flows
NF-iSAM: Incremental Smoothing and Mapping via Normalizing Flows
Qiangqiang Huang
Can Pu
D. Fourie
Kasra Khosoussi
Jonathan P. How
J. Leonard
66
12
0
11 May 2021
Stochastic Image-to-Video Synthesis using cINNs
Stochastic Image-to-Video Synthesis using cINNs
Michael Dorkenwald
Timo Milbich
A. Blattmann
Robin Rombach
Konstantinos G. Derpanis
Bjorn Ommer
DiffMVGen
111
55
0
10 May 2021
Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
  Kernels
Learning High-Dimensional Distributions with Latent Neural Fokker-Planck Kernels
Yufan Zhou
Changyou Chen
Jinhui Xu
39
2
0
10 May 2021
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential
  Family Distributions
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential Family Distributions
Bertrand Charpentier
Oliver Borchert
Daniel Zügner
Simon Geisler
Stephan Günnemann
UQCVBDL
70
17
0
10 May 2021
Generative Adversarial Networks (GANs) in Networking: A Comprehensive
  Survey & Evaluation
Generative Adversarial Networks (GANs) in Networking: A Comprehensive Survey & Evaluation
Hojjat Navidan
P. Moshiri
M. Nabati
Reza Shahbazian
S. Ghorashi
V. Shah-Mansouri
David Windridge
34
87
0
10 May 2021
A likelihood approach to nonparametric estimation of a singular
  distribution using deep generative models
A likelihood approach to nonparametric estimation of a singular distribution using deep generative models
Minwoo Chae
Dongha Kim
Yongdai Kim
Lizhen Lin
97
17
0
09 May 2021
MetaKernel: Learning Variational Random Features with Limited Labels
MetaKernel: Learning Variational Random Features with Limited Labels
Yingjun Du
Haoliang Sun
Xiantong Zhen
Jun Xu
Yilong Yin
Ling Shao
Cees G. M. Snoek
VLMBDL
37
5
0
08 May 2021
Interpretable machine learning for high-dimensional trajectories of
  aging health
Interpretable machine learning for high-dimensional trajectories of aging health
Spencer Farrell
Arnold Mitnitski
Kenneth Rockwood
Andrew Rutenberg
AI4CE
38
20
0
07 May 2021
COMISR: Compression-Informed Video Super-Resolution
COMISR: Compression-Informed Video Super-Resolution
Yinxiao Li
Pengchong Jin
Feng Yang
Ce Liu
Ming-Hsuan Yang
P. Milanfar
SupR
65
39
0
04 May 2021
How Bayesian Should Bayesian Optimisation Be?
How Bayesian Should Bayesian Optimisation Be?
George De Ath
Richard Everson
J. Fieldsend
65
6
0
03 May 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a
  Geometry-Based Variational Autoencoder
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
129
69
0
30 Apr 2021
PCFGs Can Do Better: Inducing Probabilistic Context-Free Grammars with
  Many Symbols
PCFGs Can Do Better: Inducing Probabilistic Context-Free Grammars with Many Symbols
Aaron Courville
Yanpeng Zhao
Kewei Tu
67
25
0
28 Apr 2021
From Human Explanation to Model Interpretability: A Framework Based on
  Weight of Evidence
From Human Explanation to Model Interpretability: A Framework Based on Weight of Evidence
David Alvarez-Melis
Harmanpreet Kaur
Hal Daumé
Hanna M. Wallach
Jennifer Wortman Vaughan
FAtt
103
31
0
27 Apr 2021
System identification using Bayesian neural networks with nonparametric
  noise models
System identification using Bayesian neural networks with nonparametric noise models
Christos Merkatas
Simo Särkkä
70
3
0
25 Apr 2021
Invertible Denoising Network: A Light Solution for Real Noise Removal
Invertible Denoising Network: A Light Solution for Real Noise Removal
Yang Liu
Zhenyue Qin
Saeed Anwar
Pan Ji
Dongwoo Kim
Sabrina Caldwell
Tom Gedeon
137
144
0
21 Apr 2021
Class-Incremental Learning with Generative Classifiers
Class-Incremental Learning with Generative Classifiers
Gido M. van de Ven
Zhe Li
A. Tolias
BDL
96
61
0
20 Apr 2021
Permutation-Invariant Variational Autoencoder for Graph-Level
  Representation Learning
Permutation-Invariant Variational Autoencoder for Graph-Level Representation Learning
R. Winter
Frank Noé
Djork-Arné Clevert
BDLSSL
63
27
0
20 Apr 2021
Cycle-free CycleGAN using Invertible Generator for Unsupervised Low-Dose
  CT Denoising
Cycle-free CycleGAN using Invertible Generator for Unsupervised Low-Dose CT Denoising
Taesung Kwon
Jong Chul Ye
MedIm
118
32
0
17 Apr 2021
Convolutional Normalizing Flows for Deep Gaussian Processes
Convolutional Normalizing Flows for Deep Gaussian Processes
Haibin Yu
Dapeng Liu
Yizhou Chen
K. H. Low
Patrick Jaillet
BDL
64
6
0
17 Apr 2021
Iterative Alignment Flows
Iterative Alignment Flows
Zeyu Zhou
Ziyu Gong
Pradeep Ravikumar
David I. Inouye
OTDRL
93
5
0
15 Apr 2021
Learning by example: fast reliability-aware seismic imaging with
  normalizing flows
Learning by example: fast reliability-aware seismic imaging with normalizing flows
Ali Siahkoohi
Felix J. Herrmann
OOD
85
13
0
13 Apr 2021
Boltzmann Tuning of Generative Models
Boltzmann Tuning of Generative Models
Victor Berger
Michele Sebag
55
0
0
12 Apr 2021
Understanding Event-Generation Networks via Uncertainties
Understanding Event-Generation Networks via Uncertainties
Marco Bellagente
Manuel Haussmann
Michel Luchmann
Tilman Plehn
BDL
118
55
0
09 Apr 2021
Flow-based Spatio-Temporal Structured Prediction of Motion Dynamics
Flow-based Spatio-Temporal Structured Prediction of Motion Dynamics
Mohsen Zand
Ali Etemad
Michael A. Greenspan
AI4CE
80
6
0
09 Apr 2021
Multilevel Stein variational gradient descent with applications to
  Bayesian inverse problems
Multilevel Stein variational gradient descent with applications to Bayesian inverse problems
Terrence Alsup
Luca Venturi
Benjamin Peherstorfer
41
5
0
05 Apr 2021
Previous
123...303132...444546
Next