ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.05770
  4. Cited By
Variational Inference with Normalizing Flows

Variational Inference with Normalizing Flows

21 May 2015
Danilo Jimenez Rezende
S. Mohamed
    DRL
    BDL
ArXivPDFHTML

Papers citing "Variational Inference with Normalizing Flows"

50 / 830 papers shown
Title
Structured Output Learning with Conditional Generative Flows
Structured Output Learning with Conditional Generative Flows
You Lu
Bert Huang
BDL
DRL
21
72
0
30 May 2019
Graph Normalizing Flows
Graph Normalizing Flows
Jenny Liu
Aviral Kumar
Jimmy Ba
J. Kiros
Kevin Swersky
BDL
GNN
AI4CE
27
154
0
30 May 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
32
14
0
27 May 2019
HINT: Hierarchical Invertible Neural Transport for Density Estimation
  and Bayesian Inference
HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference
Jakob Kruse
Gianluca Detommaso
Ullrich Kothe
Robert Scheichl
13
45
0
25 May 2019
DIVA: Domain Invariant Variational Autoencoders
DIVA: Domain Invariant Variational Autoencoders
Maximilian Ilse
Jakub M. Tomczak
Christos Louizos
Max Welling
DRL
OOD
28
198
0
24 May 2019
Discrete Flows: Invertible Generative Models of Discrete Data
Discrete Flows: Invertible Generative Models of Discrete Data
Dustin Tran
Keyon Vafa
Kumar Krishna Agrawal
Laurent Dinh
Ben Poole
DRL
24
114
0
24 May 2019
Non-Autoregressive Neural Text-to-Speech
Non-Autoregressive Neural Text-to-Speech
Kainan Peng
Ming-Yu Liu
Z. Song
Kexin Zhao
29
39
0
21 May 2019
Minimal Achievable Sufficient Statistic Learning
Minimal Achievable Sufficient Statistic Learning
Milan Cvitkovic
Günther Koliander
25
12
0
19 May 2019
Integer Discrete Flows and Lossless Compression
Integer Discrete Flows and Lossless Compression
Emiel Hoogeboom
Jorn W. T. Peters
Rianne van den Berg
Max Welling
19
157
0
17 May 2019
Correlated Variational Auto-Encoders
Correlated Variational Auto-Encoders
Da Tang
Dawen Liang
Tony Jebara
Nicholas Ruozzi
CML
GNN
24
21
0
14 May 2019
Sum-of-Squares Polynomial Flow
Sum-of-Squares Polynomial Flow
P. Jaini
Kira A. Selby
Yaoliang Yu
TPM
22
141
0
07 May 2019
Neural source-filter waveform models for statistical parametric speech
  synthesis
Neural source-filter waveform models for statistical parametric speech synthesis
Xin Wang
Shinji Takaki
Junichi Yamagishi
31
117
0
27 Apr 2019
Effective Estimation of Deep Generative Language Models
Effective Estimation of Deep Generative Language Models
Tom Pelsmaeker
Wilker Aziz
BDL
24
27
0
17 Apr 2019
Learning Probabilistic Multi-Modal Actor Models for Vision-Based Robotic
  Grasping
Learning Probabilistic Multi-Modal Actor Models for Vision-Based Robotic Grasping
Mengyuan Yan
A. Li
Mrinal Kalakrishnan
P. Pastor
15
18
0
15 Apr 2019
Exact Rate-Distortion in Autoencoders via Echo Noise
Exact Rate-Distortion in Autoencoders via Echo Noise
Rob Brekelmans
Daniel Moyer
Aram Galstyan
Greg Ver Steeg
24
17
0
15 Apr 2019
Nonparametric Density Estimation for High-Dimensional Data - Algorithms
  and Applications
Nonparametric Density Estimation for High-Dimensional Data - Algorithms and Applications
Zhipeng Wang
D. W. Scott
22
69
0
30 Mar 2019
Wasserstein Dependency Measure for Representation Learning
Wasserstein Dependency Measure for Representation Learning
Sherjil Ozair
Corey Lynch
Yoshua Bengio
Aaron van den Oord
Sergey Levine
P. Sermanet
SSL
DRL
30
116
0
28 Mar 2019
Topic-Guided Variational Autoencoders for Text Generation
Topic-Guided Variational Autoencoders for Text Generation
Wenlin Wang
Zhe Gan
Hongteng Xu
Ruiyi Zhang
Guoyin Wang
Dinghan Shen
Changyou Chen
Lawrence Carin
BDL
27
126
0
17 Mar 2019
Semantics Preserving Adversarial Learning
Semantics Preserving Adversarial Learning
Ousmane Amadou Dia
Elnaz Barshan
Reza Babanezhad
AAML
GAN
29
2
0
10 Mar 2019
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural
  Transport
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
27
103
0
09 Mar 2019
VideoFlow: A Conditional Flow-Based Model for Stochastic Video
  Generation
VideoFlow: A Conditional Flow-Based Model for Stochastic Video Generation
Manoj Kumar
Mohammad Babaeizadeh
D. Erhan
Chelsea Finn
Sergey Levine
Laurent Dinh
Durk Kingma
VGen
25
131
0
04 Mar 2019
Conditional Density Estimation with Neural Networks: Best Practices and
  Benchmarks
Conditional Density Estimation with Neural Networks: Best Practices and Benchmarks
Jonas Rothfuss
Fabio Ferreira
Simon Walther
Maxim Ulrich
TPM
24
73
0
03 Mar 2019
Emerging Convolutions for Generative Normalizing Flows
Emerging Convolutions for Generative Normalizing Flows
Emiel Hoogeboom
Rianne van den Berg
Max Welling
DRL
13
98
0
30 Jan 2019
Discretizing Continuous Action Space for On-Policy Optimization
Discretizing Continuous Action Space for On-Policy Optimization
Yunhao Tang
Shipra Agrawal
OffRL
26
118
0
29 Jan 2019
Deep Generative Learning via Variational Gradient Flow
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
27
36
0
24 Jan 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate
  Modeling and Uncertainty Quantification without Labeled Data
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
46
854
0
18 Jan 2019
Conditional deep surrogate models for stochastic, high-dimensional, and
  multi-fidelity systems
Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems
Yibo Yang
P. Perdikaris
SyDa
BDL
AI4CE
29
55
0
15 Jan 2019
Dirichlet Variational Autoencoder
Dirichlet Variational Autoencoder
Weonyoung Joo
Wonsung Lee
Sungrae Park
Il-Chul Moon
BDL
DRL
19
101
0
09 Jan 2019
MAE: Mutual Posterior-Divergence Regularization for Variational
  AutoEncoders
MAE: Mutual Posterior-Divergence Regularization for Variational AutoEncoders
Xuezhe Ma
Chunting Zhou
Eduard H. Hovy
DRL
20
39
0
06 Jan 2019
AdaFlow: Domain-Adaptive Density Estimator with Application to Anomaly
  Detection and Unpaired Cross-Domain Translation
AdaFlow: Domain-Adaptive Density Estimator with Application to Anomaly Detection and Unpaired Cross-Domain Translation
Masataka Yamaguchi
Yuma Koizumi
N. Harada
19
37
0
14 Dec 2018
Encoding prior knowledge in the structure of the likelihood
Encoding prior knowledge in the structure of the likelihood
Jakob Knollmüller
T. Ensslin
36
11
0
11 Dec 2018
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
24
55
0
27 Nov 2018
Learning Attractor Dynamics for Generative Memory
Learning Attractor Dynamics for Generative Memory
Yan Wu
Greg Wayne
Karol Gregor
Timothy Lillicrap
BDL
19
18
0
23 Nov 2018
Spread Divergence
Spread Divergence
Mingtian Zhang
Peter Hayes
Thomas Bird
Raza Habib
David Barber
MedIm
UD
30
20
0
21 Nov 2018
Invertible Residual Networks
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
25
618
0
02 Nov 2018
Hybrid Generative-Discriminative Models for Inverse Materials Design
Hybrid Generative-Discriminative Models for Inverse Materials Design
Phuoc Nguyen
T. Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
AI4CE
PINN
13
6
0
31 Oct 2018
Resampled Priors for Variational Autoencoders
Resampled Priors for Variational Autoencoders
Matthias Bauer
A. Mnih
BDL
DRL
16
110
0
26 Oct 2018
Good Initializations of Variational Bayes for Deep Models
Good Initializations of Variational Bayes for Deep Models
Simone Rossi
Pietro Michiardi
Maurizio Filippone
BDL
17
21
0
18 Oct 2018
Metropolis-Hastings view on variational inference and adversarial
  training
Metropolis-Hastings view on variational inference and adversarial training
Kirill Neklyudov
Evgenii Egorov
Pavel Shvechikov
Dmitry Vetrov
GAN
29
13
0
16 Oct 2018
Deep Generative Video Compression
Deep Generative Video Compression
Jun Han
Salvator Lombardo
Christopher Schroers
Stephan Mandt
VGen
32
58
0
05 Oct 2018
WAIC, but Why? Generative Ensembles for Robust Anomaly Detection
WAIC, but Why? Generative Ensembles for Robust Anomaly Detection
Hyun-Jae Choi
Eric Jang
Alexander A. Alemi
OODD
20
82
0
02 Oct 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
17
849
0
02 Oct 2018
Probabilistic Meta-Representations Of Neural Networks
Probabilistic Meta-Representations Of Neural Networks
Theofanis Karaletsos
Peter Dayan
Zoubin Ghahramani
BDL
12
27
0
01 Oct 2018
Variational Autoencoder with Implicit Optimal Priors
Variational Autoencoder with Implicit Optimal Priors
Hiroshi Takahashi
Tomoharu Iwata
Yuki Yamanaka
Masanori Yamada
Satoshi Yagi
DRL
34
61
0
14 Sep 2018
Discriminator-Actor-Critic: Addressing Sample Inefficiency and Reward
  Bias in Adversarial Imitation Learning
Discriminator-Actor-Critic: Addressing Sample Inefficiency and Reward Bias in Adversarial Imitation Learning
Ilya Kostrikov
Kumar Krishna Agrawal
Debidatta Dwibedi
Sergey Levine
Jonathan Tompson
35
256
0
09 Sep 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic
  Convergence Theory
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
12
46
0
05 Sep 2018
Analyzing Inverse Problems with Invertible Neural Networks
Analyzing Inverse Problems with Invertible Neural Networks
Lynton Ardizzone
Jakob Kruse
Sebastian J. Wirkert
D. Rahner
E. Pellegrini
R. Klessen
Lena Maier-Hein
Carsten Rother
Ullrich Kothe
21
483
0
14 Aug 2018
A Review of Learning with Deep Generative Models from Perspective of
  Graphical Modeling
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
31
16
0
05 Aug 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the
  Standard Model
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank Wood
26
31
0
20 Jul 2018
Explorations in Homeomorphic Variational Auto-Encoding
Explorations in Homeomorphic Variational Auto-Encoding
Luca Falorsi
P. D. Haan
Tim R. Davidson
Nicola De Cao
Maurice Weiler
Patrick Forré
Taco S. Cohen
BDL
DRL
30
116
0
12 Jul 2018
Previous
123...14151617
Next