ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.14961
16
64

Deep Learning for Survival Analysis: A Review

24 May 2023
S. Wiegrebe
Philipp Kopper
R. Sonabend
Bernd Bischl
Andreas Bender
ArXivPDFHTML
Abstract

The influx of deep learning (DL) techniques into the field of survival analysis in recent years has led to substantial methodological progress; for instance, learning from unstructured or high-dimensional data such as images, text or omics data. In this work, we conduct a comprehensive systematic review of DL-based methods for time-to-event analysis, characterizing them according to both survival- and DL-related attributes. In summary, the reviewed methods often address only a small subset of tasks relevant to time-to-event data - e.g., single-risk right-censored data - and neglect to incorporate more complex settings. Our findings are summarized in an editable, open-source, interactive table: https://survival-org.github.io/DL4Survival. As this research area is advancing rapidly, we encourage community contribution in order to keep this database up to date.

View on arXiv
Comments on this paper