ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.13233
22
11

Estimating Gibbs free energies via isobaric-isothermal flows

22 May 2023
Peter Wirnsberger
Borja Ibarz
George Papamakarios
ArXivPDFHTML
Abstract

We present a machine-learning model based on normalizing flows that is trained to sample from the isobaric-isothermal ensemble. In our approach, we approximate the joint distribution of a fully-flexible triclinic simulation box and particle coordinates to achieve a desired internal pressure. This novel extension of flow-based sampling to the isobaric-isothermal ensemble yields direct estimates of Gibbs free energies. We test our NPT-flow on monatomic water in the cubic and hexagonal ice phases and find excellent agreement of Gibbs free energies and other observables compared with established baselines.

View on arXiv
Comments on this paper