Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.03492
Cited By
Gradient-based Hyperparameter Optimization through Reversible Learning
11 February 2015
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient-based Hyperparameter Optimization through Reversible Learning"
50 / 497 papers shown
Title
Class-Incremental Exemplar Compression for Class-Incremental Learning
Zilin Luo
Yaoyao Liu
Bernt Schiele
Qianru Sun
VLM
CLL
91
44
0
24 Mar 2023
MELTR: Meta Loss Transformer for Learning to Fine-tune Video Foundation Models
Dohwan Ko
Joon-Young Choi
Hyeong Kyu Choi
Kyoung-Woon On
Byungseok Roh
Hyunwoo J. Kim
52
19
0
23 Mar 2023
Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints
Jiayang Li
Jiahao Yu
Boyi Liu
Zhaoran Wang
Y. Nie
35
6
0
20 Feb 2023
Nystrom Method for Accurate and Scalable Implicit Differentiation
Ryuichiro Hataya
M. Yamada
ODL
36
8
0
20 Feb 2023
A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization
Mathieu Dagréou
Thomas Moreau
Samuel Vaiter
Pierre Ablin
39
12
0
17 Feb 2023
Revisiting Weighted Aggregation in Federated Learning with Neural Networks
Zexi Li
Tao R. Lin
Xinyi Shang
Chao-Xiang Wu
FedML
45
60
0
14 Feb 2023
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
31
41
0
13 Feb 2023
Communication-Efficient Federated Bilevel Optimization with Local and Global Lower Level Problems
Junyi Li
Feihu Huang
Heng Huang
FedML
27
12
0
13 Feb 2023
Achieving Linear Speedup in Non-IID Federated Bilevel Learning
Minhui Huang
Dewei Zhang
Kaiyi Ji
FedML
27
18
0
10 Feb 2023
Communication-Efficient Federated Hypergradient Computation via Aggregated Iterative Differentiation
Peiyao Xiao
Kaiyi Ji
FedML
32
10
0
09 Feb 2023
Averaged Method of Multipliers for Bi-Level Optimization without Lower-Level Strong Convexity
Risheng Liu
Yaohua Liu
Wei-Ting Yao
Shangzhi Zeng
Jin Zhang
32
24
0
07 Feb 2023
Scaling Laws for Hyperparameter Optimization
Arlind Kadra
Maciej Janowski
Martin Wistuba
Josif Grabocka
25
9
0
01 Feb 2023
Online Loss Function Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
38
5
0
30 Jan 2023
Massively Scaling Heteroscedastic Classifiers
Mark Collier
Rodolphe Jenatton
Basil Mustafa
N. Houlsby
Jesse Berent
E. Kokiopoulou
26
8
0
30 Jan 2023
Probabilistic Bilevel Coreset Selection
Xiao Zhou
Renjie Pi
Weizhong Zhang
Yong Lin
Tong Zhang
NoLa
31
27
0
24 Jan 2023
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
Xiao Zhou
Yong Lin
Renjie Pi
Weizhong Zhang
Renzhe Xu
Peng Cui
Tong Zhang
OODD
39
60
0
24 Jan 2023
Federated Automatic Differentiation
Keith Rush
Zachary B. Charles
Zachary Garrett
FedML
34
1
0
18 Jan 2023
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
53
121
0
17 Jan 2023
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
31
88
0
13 Jan 2023
Analyzing Inexact Hypergradients for Bilevel Learning
Matthias Joachim Ehrhardt
Lindon Roberts
24
8
0
11 Jan 2023
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
45
73
0
11 Jan 2023
Optimistic Meta-Gradients
Sebastian Flennerhag
Tom Zahavy
Brendan O'Donoghue
Hado van Hasselt
András Gyorgy
Satinder Singh
39
3
0
09 Jan 2023
Enhancement attacks in biomedical machine learning
M. Rosenblatt
J. Dadashkarimi
D. Scheinost
AAML
26
4
0
05 Jan 2023
First-order penalty methods for bilevel optimization
Zhaosong Lu
Sanyou Mei
66
31
0
04 Jan 2023
On Implicit Bias in Overparameterized Bilevel Optimization
Paul Vicol
Jon Lorraine
Fabian Pedregosa
David Duvenaud
Roger C. Grosse
AI4CE
33
37
0
28 Dec 2022
Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence
Jian Guo
Sai Wang
L. Ni
H. Shum
AIFin
19
8
0
13 Dec 2022
Accelerating Dataset Distillation via Model Augmentation
Lei Zhang
Jie M. Zhang
Bowen Lei
Subhabrata Mukherjee
Xiang Pan
Bo Zhao
Caiwen Ding
Heng Chang
Dongkuan Xu
DD
43
62
0
12 Dec 2022
Transformer-Based Learned Optimization
Erik Gartner
Luke Metz
Mykhaylo Andriluka
C. Freeman
C. Sminchisescu
23
11
0
02 Dec 2022
Task Discovery: Finding the Tasks that Neural Networks Generalize on
Andrei Atanov
Andrei Filatov
Teresa Yeo
Ajay Sohmshetty
Amir Zamir
OOD
45
10
0
01 Dec 2022
Implicit Training of Energy Model for Structure Prediction
Shiv Shankar
Vihari Piratla
19
0
0
21 Nov 2022
Minimizing the Accumulated Trajectory Error to Improve Dataset Distillation
Jiawei Du
Yiding Jiang
Vincent Y. F. Tan
Qiufeng Wang
Haizhou Li
DD
40
110
0
20 Nov 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
35
60
0
17 Nov 2022
Alternating Implicit Projected SGD and Its Efficient Variants for Equality-constrained Bilevel Optimization
Quan-Wu Xiao
Han Shen
W. Yin
Tianyi Chen
18
8
0
14 Nov 2022
A Penalty-Based Method for Communication-Efficient Decentralized Bilevel Programming
Parvin Nazari
Ahmad Mousavi
Davoud Ataee Tarzanagh
George Michailidis
31
4
0
08 Nov 2022
Black-box Coreset Variational Inference
Dionysis Manousakas
H. Ritter
Theofanis Karaletsos
BDL
21
4
0
04 Nov 2022
Decentralized Stochastic Bilevel Optimization with Improved per-Iteration Complexity
Xuxing Chen
Minhui Huang
Shiqian Ma
Krishnakumar Balasubramanian
27
25
0
23 Oct 2022
Efficient Dataset Distillation Using Random Feature Approximation
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
DD
74
96
0
21 Oct 2022
A Bayesian Optimization Framework for Finding Local Optima in Expensive Multi-Modal Functions
Yongsheng Mei
Tian-Shing Lan
Mahdi Imani
Suresh Subramaniam
GP
25
16
0
13 Oct 2022
Equivariance-aware Architectural Optimization of Neural Networks
Kaitlin Maile
Dennis G. Wilson
Patrick Forré
AI4CE
41
9
0
11 Oct 2022
Decentralized Hyper-Gradient Computation over Time-Varying Directed Networks
Naoyuki Terashita
Satoshi Hara
FedML
26
1
0
05 Oct 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
75
65
0
26 Sep 2022
One-Shot Learning of Stochastic Differential Equations with Data Adapted Kernels
Matthieu Darcy
B. Hamzi
Giulia Livieri
H. Owhadi
P. Tavallali
36
26
0
24 Sep 2022
Tradeoffs between convergence rate and noise amplification for momentum-based accelerated optimization algorithms
Hesameddin Mohammadi
Meisam Razaviyayn
Mihailo R. Jovanović
31
7
0
24 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
47
22
0
22 Sep 2022
Learning Symbolic Model-Agnostic Loss Functions via Meta-Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
FedML
29
11
0
19 Sep 2022
Differentiable Bilevel Programming for Stackelberg Congestion Games
Jiayang Li
Jiahao Yu
Qianni Wang
Boyi Liu
Zhaoran Wang
Y. Nie
31
14
0
15 Sep 2022
Meta-Gradients in Non-Stationary Environments
Jelena Luketina
Sebastian Flennerhag
Yannick Schroecker
David Abel
Tom Zahavy
Satinder Singh
31
10
0
13 Sep 2022
Simple and Effective Gradient-Based Tuning of Sequence-to-Sequence Models
Jared Lichtarge
Chris Alberti
Shankar Kumar
37
4
0
10 Sep 2022
Task Selection for AutoML System Evaluation
Jon Lorraine
Nihesh Anderson
Chansoo Lee
Quentin de Laroussilhe
Mehadi Hassen
49
4
0
26 Aug 2022
A Globally Convergent Gradient-based Bilevel Hyperparameter Optimization Method
Ankur Sinha
Satender Gunwal
Shivam Kumar
9
2
0
25 Aug 2022
Previous
1
2
3
4
5
6
...
8
9
10
Next