Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.03492
Cited By
Gradient-based Hyperparameter Optimization through Reversible Learning
11 February 2015
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient-based Hyperparameter Optimization through Reversible Learning"
50 / 187 papers shown
Title
Efficient Curvature-Aware Hypergradient Approximation for Bilevel Optimization
Youran Dong
Junfeng Yang
Wei-Ting Yao
Jin Zhang
135
0
0
04 May 2025
Scalable Meta-Learning via Mixed-Mode Differentiation
Iurii Kemaev
Dan A Calian
Luisa M Zintgraf
Gregory Farquhar
H. V. Hasselt
57
0
0
01 May 2025
MAGIC: Near-Optimal Data Attribution for Deep Learning
Andrew Ilyas
Logan Engstrom
TDI
39
0
0
23 Apr 2025
An experimental survey and Perspective View on Meta-Learning for Automated Algorithms Selection and Parametrization
Moncef Garouani
28
0
0
08 Apr 2025
Reinforcement Teaching
Alex Lewandowski
Calarina Muslimani
Dale Schuurmans
Matthew E. Taylor
Jun Luo
81
1
0
28 Jan 2025
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Chen Wang
Kaiyi Ji
Junyi Geng
Zhongqiang Ren
Taimeng Fu
...
Yi Du
Qihang Li
Yi Yang
Xiao Lin
Zhipeng Zhao
SSL
89
9
0
28 Jan 2025
Multi-Objective Hyperparameter Selection via Hypothesis Testing on Reliability Graphs
Amirmohammad Farzaneh
Osvaldo Simeone
86
0
0
22 Jan 2025
A Learn-to-Optimize Approach for Coordinate-Wise Step Sizes for Quasi-Newton Methods
Wei Lin
Qingyu Song
Hong Xu
94
1
0
25 Nov 2024
Influence functions and regularity tangents for efficient active learning
Frederik Eaton
TDI
94
0
0
22 Nov 2024
Fully First-Order Methods for Decentralized Bilevel Optimization
Xiaoyu Wang
Xuxing Chen
Shiqian Ma
Tong Zhang
38
0
0
25 Oct 2024
Differentially Private Bilevel Optimization
Guy Kornowski
142
0
0
29 Sep 2024
Adaptive Learn-then-Test: Statistically Valid and Efficient Hyperparameter Selection
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
LM&MA
77
3
0
24 Sep 2024
Online Nonconvex Bilevel Optimization with Bregman Divergences
Jason Bohne
David Rosenberg
Gary Kazantsev
Pawel Polak
27
0
0
16 Sep 2024
A New First-Order Meta-Learning Algorithm with Convergence Guarantees
El Mahdi Chayti
Martin Jaggi
30
1
0
05 Sep 2024
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
Yu Sun
Xinhao Li
Karan Dalal
Jiarui Xu
Arjun Vikram
...
Xinlei Chen
Xiaolong Wang
Sanmi Koyejo
Tatsunori Hashimoto
Carlos Guestrin
63
92
0
05 Jul 2024
First-Order Methods for Linearly Constrained Bilevel Optimization
Guy Kornowski
Swati Padmanabhan
Kai Wang
Zhe Zhang
S. Sra
78
5
0
18 Jun 2024
LancBiO: dynamic Lanczos-aided bilevel optimization via Krylov subspace
Bin Gao
Yan Yang
Ya-xiang Yuan
39
2
0
04 Apr 2024
DiLM: Distilling Dataset into Language Model for Text-level Dataset Distillation
Aru Maekawa
Satoshi Kosugi
Kotaro Funakoshi
Manabu Okumura
DD
43
10
0
30 Mar 2024
AutoLoRA: Automatically Tuning Matrix Ranks in Low-Rank Adaptation Based on Meta Learning
Ruiyi Zhang
Rushi Qiang
Sai Ashish Somayajula
Pengtao Xie
42
13
0
14 Mar 2024
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and Convergence Analysis
Jie Hao
Xiaochuan Gong
Mingrui Liu
30
7
0
17 Jan 2024
A First-Order Multi-Gradient Algorithm for Multi-Objective Bi-Level Optimization
Feiyang Ye
Baijiong Lin
Xiao-Qun Cao
Yu Zhang
Ivor Tsang
50
6
0
17 Jan 2024
MADA: Meta-Adaptive Optimizers through hyper-gradient Descent
Kaan Ozkara
Can Karakus
Parameswaran Raman
Mingyi Hong
Shoham Sabach
B. Kveton
V. Cevher
27
2
0
17 Jan 2024
TorchDEQ: A Library for Deep Equilibrium Models
Zhengyang Geng
J. Zico Kolter
VLM
56
12
0
28 Oct 2023
Farzi Data: Autoregressive Data Distillation
Noveen Sachdeva
Zexue He
Wang-Cheng Kang
Jianmo Ni
D. Cheng
Julian McAuley
DD
23
3
0
15 Oct 2023
Learning How to Propagate Messages in Graph Neural Networks
Teng Xiao
Zhengyu Chen
Donglin Wang
Suhang Wang
GNN
34
76
0
01 Oct 2023
Relax and penalize: a new bilevel approach to mixed-binary hyperparameter optimization
M. D. Santis
Jordan Frécon
Francesco Rinaldi
Saverio Salzo
Martin Schmidt
Martin Schmidt
53
0
0
21 Aug 2023
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
Mohammad Salehi
Subhadip Mukherjee
Lindon Roberts
Matthias Joachim Ehrhardt
26
5
0
19 Aug 2023
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
33
2
0
01 Aug 2023
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models
Alexander Lin
Bahareh Tolooshams
Yves Atchadé
Demba E. Ba
36
1
0
05 Jun 2023
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
26
0
0
02 Jun 2023
FedAVO: Improving Communication Efficiency in Federated Learning with African Vultures Optimizer
Md Zarif Hossain
Ahmed Imteaj
FedML
29
5
0
02 May 2023
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li
James Harrison
Jascha Narain Sohl-Dickstein
Virginia Smith
Luke Metz
49
5
0
21 Apr 2023
Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints
Jiayang Li
Jiahao Yu
Boyi Liu
Zhaoran Wang
Y. Nie
35
6
0
20 Feb 2023
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
31
41
0
13 Feb 2023
Online Loss Function Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
35
5
0
30 Jan 2023
Probabilistic Bilevel Coreset Selection
Xiao Zhou
Renjie Pi
Weizhong Zhang
Yong Lin
Tong Zhang
NoLa
31
27
0
24 Jan 2023
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
Xiao Zhou
Yong Lin
Renjie Pi
Weizhong Zhang
Renzhe Xu
Peng Cui
Tong Zhang
OODD
39
60
0
24 Jan 2023
Federated Automatic Differentiation
Keith Rush
Zachary B. Charles
Zachary Garrett
FedML
34
1
0
18 Jan 2023
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
53
121
0
17 Jan 2023
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
31
87
0
13 Jan 2023
Analyzing Inexact Hypergradients for Bilevel Learning
Matthias Joachim Ehrhardt
Lindon Roberts
24
8
0
11 Jan 2023
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
45
73
0
11 Jan 2023
First-order penalty methods for bilevel optimization
Zhaosong Lu
Sanyou Mei
66
31
0
04 Jan 2023
Accelerating Dataset Distillation via Model Augmentation
Lei Zhang
Jie M. Zhang
Bowen Lei
Subhabrata Mukherjee
Xiang Pan
Bo-Lu Zhao
Caiwen Ding
Heng Chang
Dongkuan Xu
DD
43
62
0
12 Dec 2022
Task Discovery: Finding the Tasks that Neural Networks Generalize on
Andrei Atanov
Andrei Filatov
Teresa Yeo
Ajay Sohmshetty
Amir Zamir
OOD
45
10
0
01 Dec 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
35
60
0
17 Nov 2022
A Penalty-Based Method for Communication-Efficient Decentralized Bilevel Programming
Parvin Nazari
Ahmad Mousavi
Davoud Ataee Tarzanagh
George Michailidis
28
4
0
08 Nov 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
75
64
0
26 Sep 2022
One-Shot Learning of Stochastic Differential Equations with Data Adapted Kernels
Matthieu Darcy
B. Hamzi
Giulia Livieri
H. Owhadi
P. Tavallali
36
25
0
24 Sep 2022
Tradeoffs between convergence rate and noise amplification for momentum-based accelerated optimization algorithms
Hesameddin Mohammadi
Meisam Razaviyayn
Mihailo R. Jovanović
18
7
0
24 Sep 2022
1
2
3
4
Next