ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.03492
  4. Cited By
Gradient-based Hyperparameter Optimization through Reversible Learning

Gradient-based Hyperparameter Optimization through Reversible Learning

11 February 2015
D. Maclaurin
David Duvenaud
Ryan P. Adams
    DD
ArXivPDFHTML

Papers citing "Gradient-based Hyperparameter Optimization through Reversible Learning"

50 / 187 papers shown
Title
Efficient Curvature-Aware Hypergradient Approximation for Bilevel Optimization
Efficient Curvature-Aware Hypergradient Approximation for Bilevel Optimization
Youran Dong
Junfeng Yang
Wei-Ting Yao
Jin Zhang
135
0
0
04 May 2025
Scalable Meta-Learning via Mixed-Mode Differentiation
Scalable Meta-Learning via Mixed-Mode Differentiation
Iurii Kemaev
Dan A Calian
Luisa M Zintgraf
Gregory Farquhar
H. V. Hasselt
57
0
0
01 May 2025
MAGIC: Near-Optimal Data Attribution for Deep Learning
MAGIC: Near-Optimal Data Attribution for Deep Learning
Andrew Ilyas
Logan Engstrom
TDI
39
0
0
23 Apr 2025
An experimental survey and Perspective View on Meta-Learning for Automated Algorithms Selection and Parametrization
An experimental survey and Perspective View on Meta-Learning for Automated Algorithms Selection and Parametrization
Moncef Garouani
28
0
0
08 Apr 2025
Reinforcement Teaching
Reinforcement Teaching
Alex Lewandowski
Calarina Muslimani
Dale Schuurmans
Matthew E. Taylor
Jun Luo
81
1
0
28 Jan 2025
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Chen Wang
Kaiyi Ji
Junyi Geng
Zhongqiang Ren
Taimeng Fu
...
Yi Du
Qihang Li
Yi Yang
Xiao Lin
Zhipeng Zhao
SSL
89
9
0
28 Jan 2025
Multi-Objective Hyperparameter Selection via Hypothesis Testing on Reliability Graphs
Multi-Objective Hyperparameter Selection via Hypothesis Testing on Reliability Graphs
Amirmohammad Farzaneh
Osvaldo Simeone
86
0
0
22 Jan 2025
A Learn-to-Optimize Approach for Coordinate-Wise Step Sizes for Quasi-Newton Methods
Wei Lin
Qingyu Song
Hong Xu
94
1
0
25 Nov 2024
Influence functions and regularity tangents for efficient active learning
Influence functions and regularity tangents for efficient active learning
Frederik Eaton
TDI
94
0
0
22 Nov 2024
Fully First-Order Methods for Decentralized Bilevel Optimization
Fully First-Order Methods for Decentralized Bilevel Optimization
Xiaoyu Wang
Xuxing Chen
Shiqian Ma
Tong Zhang
38
0
0
25 Oct 2024
Differentially Private Bilevel Optimization
Differentially Private Bilevel Optimization
Guy Kornowski
142
0
0
29 Sep 2024
Adaptive Learn-then-Test: Statistically Valid and Efficient Hyperparameter Selection
Adaptive Learn-then-Test: Statistically Valid and Efficient Hyperparameter Selection
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
LM&MA
77
3
0
24 Sep 2024
Online Nonconvex Bilevel Optimization with Bregman Divergences
Online Nonconvex Bilevel Optimization with Bregman Divergences
Jason Bohne
David Rosenberg
Gary Kazantsev
Pawel Polak
27
0
0
16 Sep 2024
A New First-Order Meta-Learning Algorithm with Convergence Guarantees
A New First-Order Meta-Learning Algorithm with Convergence Guarantees
El Mahdi Chayti
Martin Jaggi
30
1
0
05 Sep 2024
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
Yu Sun
Xinhao Li
Karan Dalal
Jiarui Xu
Arjun Vikram
...
Xinlei Chen
Xiaolong Wang
Sanmi Koyejo
Tatsunori Hashimoto
Carlos Guestrin
63
92
0
05 Jul 2024
First-Order Methods for Linearly Constrained Bilevel Optimization
First-Order Methods for Linearly Constrained Bilevel Optimization
Guy Kornowski
Swati Padmanabhan
Kai Wang
Zhe Zhang
S. Sra
78
5
0
18 Jun 2024
LancBiO: dynamic Lanczos-aided bilevel optimization via Krylov subspace
LancBiO: dynamic Lanczos-aided bilevel optimization via Krylov subspace
Bin Gao
Yan Yang
Ya-xiang Yuan
39
2
0
04 Apr 2024
DiLM: Distilling Dataset into Language Model for Text-level Dataset
  Distillation
DiLM: Distilling Dataset into Language Model for Text-level Dataset Distillation
Aru Maekawa
Satoshi Kosugi
Kotaro Funakoshi
Manabu Okumura
DD
43
10
0
30 Mar 2024
AutoLoRA: Automatically Tuning Matrix Ranks in Low-Rank Adaptation Based
  on Meta Learning
AutoLoRA: Automatically Tuning Matrix Ranks in Low-Rank Adaptation Based on Meta Learning
Ruiyi Zhang
Rushi Qiang
Sai Ashish Somayajula
Pengtao Xie
42
13
0
14 Mar 2024
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and
  Convergence Analysis
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and Convergence Analysis
Jie Hao
Xiaochuan Gong
Mingrui Liu
30
7
0
17 Jan 2024
A First-Order Multi-Gradient Algorithm for Multi-Objective Bi-Level
  Optimization
A First-Order Multi-Gradient Algorithm for Multi-Objective Bi-Level Optimization
Feiyang Ye
Baijiong Lin
Xiao-Qun Cao
Yu Zhang
Ivor Tsang
50
6
0
17 Jan 2024
MADA: Meta-Adaptive Optimizers through hyper-gradient Descent
MADA: Meta-Adaptive Optimizers through hyper-gradient Descent
Kaan Ozkara
Can Karakus
Parameswaran Raman
Mingyi Hong
Shoham Sabach
B. Kveton
V. Cevher
27
2
0
17 Jan 2024
TorchDEQ: A Library for Deep Equilibrium Models
TorchDEQ: A Library for Deep Equilibrium Models
Zhengyang Geng
J. Zico Kolter
VLM
56
12
0
28 Oct 2023
Farzi Data: Autoregressive Data Distillation
Farzi Data: Autoregressive Data Distillation
Noveen Sachdeva
Zexue He
Wang-Cheng Kang
Jianmo Ni
D. Cheng
Julian McAuley
DD
23
3
0
15 Oct 2023
Learning How to Propagate Messages in Graph Neural Networks
Learning How to Propagate Messages in Graph Neural Networks
Teng Xiao
Zhengyu Chen
Donglin Wang
Suhang Wang
GNN
34
76
0
01 Oct 2023
Relax and penalize: a new bilevel approach to mixed-binary hyperparameter optimization
Relax and penalize: a new bilevel approach to mixed-binary hyperparameter optimization
M. D. Santis
Jordan Frécon
Francesco Rinaldi
Saverio Salzo
Martin Schmidt
Martin Schmidt
53
0
0
21 Aug 2023
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
Mohammad Salehi
Subhadip Mukherjee
Lindon Roberts
Matthias Joachim Ehrhardt
26
5
0
19 Aug 2023
Doubly Robust Instance-Reweighted Adversarial Training
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
33
2
0
01 Aug 2023
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
  Estimation for Latent Gaussian Models
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models
Alexander Lin
Bahareh Tolooshams
Yves Atchadé
Demba E. Ba
36
1
0
05 Jun 2023
Federated Multi-Sequence Stochastic Approximation with Local
  Hypergradient Estimation
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
26
0
0
02 Jun 2023
FedAVO: Improving Communication Efficiency in Federated Learning with
  African Vultures Optimizer
FedAVO: Improving Communication Efficiency in Federated Learning with African Vultures Optimizer
Md Zarif Hossain
Ahmed Imteaj
FedML
29
5
0
02 May 2023
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution
  Strategies
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li
James Harrison
Jascha Narain Sohl-Dickstein
Virginia Smith
Luke Metz
49
5
0
21 Apr 2023
Achieving Hierarchy-Free Approximation for Bilevel Programs With
  Equilibrium Constraints
Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints
Jiayang Li
Jiahao Yu
Boyi Liu
Zhaoran Wang
Y. Nie
35
6
0
20 Feb 2023
Dataset Distillation with Convexified Implicit Gradients
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
31
41
0
13 Feb 2023
Online Loss Function Learning
Online Loss Function Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
35
5
0
30 Jan 2023
Probabilistic Bilevel Coreset Selection
Probabilistic Bilevel Coreset Selection
Xiao Zhou
Renjie Pi
Weizhong Zhang
Yong Lin
Tong Zhang
NoLa
31
27
0
24 Jan 2023
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
Xiao Zhou
Yong Lin
Renjie Pi
Weizhong Zhang
Renzhe Xu
Peng Cui
Tong Zhang
OODD
39
60
0
24 Jan 2023
Federated Automatic Differentiation
Federated Automatic Differentiation
Keith Rush
Zachary B. Charles
Zachary Garrett
FedML
34
1
0
18 Jan 2023
Dataset Distillation: A Comprehensive Review
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
53
121
0
17 Jan 2023
A Comprehensive Survey of Dataset Distillation
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
31
87
0
13 Jan 2023
Analyzing Inexact Hypergradients for Bilevel Learning
Analyzing Inexact Hypergradients for Bilevel Learning
Matthias Joachim Ehrhardt
Lindon Roberts
24
8
0
11 Jan 2023
Data Distillation: A Survey
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
45
73
0
11 Jan 2023
First-order penalty methods for bilevel optimization
First-order penalty methods for bilevel optimization
Zhaosong Lu
Sanyou Mei
66
31
0
04 Jan 2023
Accelerating Dataset Distillation via Model Augmentation
Accelerating Dataset Distillation via Model Augmentation
Lei Zhang
Jie M. Zhang
Bowen Lei
Subhabrata Mukherjee
Xiang Pan
Bo-Lu Zhao
Caiwen Ding
Heng Chang
Dongkuan Xu
DD
43
62
0
12 Dec 2022
Task Discovery: Finding the Tasks that Neural Networks Generalize on
Task Discovery: Finding the Tasks that Neural Networks Generalize on
Andrei Atanov
Andrei Filatov
Teresa Yeo
Ajay Sohmshetty
Amir Zamir
OOD
45
10
0
01 Dec 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
35
60
0
17 Nov 2022
A Penalty-Based Method for Communication-Efficient Decentralized Bilevel
  Programming
A Penalty-Based Method for Communication-Efficient Decentralized Bilevel Programming
Parvin Nazari
Ahmad Mousavi
Davoud Ataee Tarzanagh
George Michailidis
28
4
0
08 Nov 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
75
64
0
26 Sep 2022
One-Shot Learning of Stochastic Differential Equations with Data Adapted
  Kernels
One-Shot Learning of Stochastic Differential Equations with Data Adapted Kernels
Matthieu Darcy
B. Hamzi
Giulia Livieri
H. Owhadi
P. Tavallali
36
25
0
24 Sep 2022
Tradeoffs between convergence rate and noise amplification for
  momentum-based accelerated optimization algorithms
Tradeoffs between convergence rate and noise amplification for momentum-based accelerated optimization algorithms
Hesameddin Mohammadi
Meisam Razaviyayn
Mihailo R. Jovanović
18
7
0
24 Sep 2022
1234
Next