Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.03492
Cited By
Gradient-based Hyperparameter Optimization through Reversible Learning
11 February 2015
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient-based Hyperparameter Optimization through Reversible Learning"
47 / 497 papers shown
Title
SLAQ: Quality-Driven Scheduling for Distributed Machine Learning
Haoyu Zhang
Logan Stafman
Andrew Or
M. Freedman
35
140
0
13 Feb 2018
Predict and Constrain: Modeling Cardinality in Deep Structured Prediction
Nataly Brukhim
Amir Globerson
29
9
0
13 Feb 2018
Semi-Amortized Variational Autoencoders
Yoon Kim
Sam Wiseman
Andrew C. Miller
David Sontag
Alexander M. Rush
BDL
DRL
33
243
0
07 Feb 2018
Meta-Tracker: Fast and Robust Online Adaptation for Visual Object Trackers
Eunbyung Park
Alexander C. Berg
VOT
TTA
38
166
0
09 Jan 2018
A Bridge Between Hyperparameter Optimization and Learning-to-learn
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
35
20
0
18 Dec 2017
Nonparametric Neural Networks
George Philipp
J. Carbonell
14
21
0
14 Dec 2017
Extreme Dimension Reduction for Handling Covariate Shift
Fulton Wang
Cynthia Rudin
25
1
0
29 Nov 2017
Towards Poisoning of Deep Learning Algorithms with Back-gradient Optimization
Luis Muñoz-González
Battista Biggio
Ambra Demontis
Andrea Paudice
Vasin Wongrassamee
Emil C. Lupu
Fabio Roli
AAML
15
624
0
29 Aug 2017
Image Augmentation using Radial Transform for Training Deep Neural Networks
Hojjat Salehinejad
S. Valaee
T. Dowdell
Joseph Barfett
16
11
0
14 Aug 2017
Analysis and Optimization of Convolutional Neural Network Architectures
Martin Thoma
22
72
0
31 Jul 2017
Discretization-free Knowledge Gradient Methods for Bayesian Optimization
Jian Wu
P. Frazier
BDL
13
9
0
20 Jul 2017
The Reversible Residual Network: Backpropagation Without Storing Activations
Aidan Gomez
Mengye Ren
R. Urtasun
Roger C. Grosse
25
542
0
14 Jul 2017
Kafnets: kernel-based non-parametric activation functions for neural networks
Simone Scardapane
S. Van Vaerenbergh
Simone Totaro
A. Uncini
19
12
0
13 Jul 2017
SHADHO: Massively Scalable Hardware-Aware Distributed Hyperparameter Optimization
Jeffery Kinnison
Nathaniel Kremer-Herman
D. Thain
Walter J. Scheirer
17
11
0
05 Jul 2017
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
17
1,785
0
16 Jun 2017
Stochastic Training of Neural Networks via Successive Convex Approximations
Simone Scardapane
P. Di Lorenzo
22
9
0
15 Jun 2017
Hyperparameter Optimization: A Spectral Approach
Elad Hazan
Adam R. Klivans
Yang Yuan
27
118
0
02 Jun 2017
Reinforcement Learning for Learning Rate Control
Chang Xu
Tao Qin
G. Wang
Tie-Yan Liu
16
34
0
31 May 2017
End-to-end representation learning for Correlation Filter based tracking
Jack Valmadre
Luca Bertinetto
João F. Henriques
Andrea Vedaldi
Philip Torr
36
1,396
0
20 Apr 2017
Exploiting gradients and Hessians in Bayesian optimization and Bayesian quadrature
Anqi Wu
Mikio C. Aoi
Jonathan W. Pillow
17
41
0
31 Mar 2017
Gradient-based Regularization Parameter Selection for Problems with Non-smooth Penalty Functions
Jean Feng
N. Simon
14
20
0
28 Mar 2017
End-to-End Learning for Structured Prediction Energy Networks
David Belanger
Bishan Yang
Andrew McCallum
14
136
0
16 Mar 2017
Online Learning Rate Adaptation with Hypergradient Descent
A. G. Baydin
R. Cornish
David Martínez-Rubio
Mark W. Schmidt
Frank Wood
ODL
30
242
0
14 Mar 2017
Bayesian Optimization with Gradients
Jian Wu
Matthias Poloczek
A. Wilson
P. Frazier
21
209
0
13 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
371
11,700
0
09 Mar 2017
Forward and Reverse Gradient-Based Hyperparameter Optimization
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
133
409
0
06 Mar 2017
Meta Networks
Tsendsuren Munkhdalai
Hong-ye Yu
GNN
AI4CE
21
1,058
0
02 Mar 2017
Learning to Optimize Neural Nets
Ke Li
Jitendra Malik
21
130
0
01 Mar 2017
Variational Inference using Implicit Distributions
Ferenc Huszár
DRL
GAN
16
135
0
27 Feb 2017
Structured Attention Networks
Yoon Kim
Carl Denton
Luong Hoang
Alexander M. Rush
41
460
0
03 Feb 2017
An Introduction to Deep Learning for the Physical Layer
Tim O'Shea
J. Hoydis
AI4CE
89
2,172
0
02 Feb 2017
Tricks from Deep Learning
A. G. Baydin
Barak A. Pearlmutter
J. Siskind
ODL
16
9
0
10 Nov 2016
Unrolled Generative Adversarial Networks
Luke Metz
Ben Poole
David Pfau
Jascha Narain Sohl-Dickstein
GAN
59
1,001
0
07 Nov 2016
Neural Network Architecture Optimization through Submodularity and Supermodularity
Junqi Jin
Ziang Yan
Kun Fu
Nan Jiang
Changshui Zhang
22
11
0
01 Sep 2016
Optimizing Recurrent Neural Networks Architectures under Time Constraints
Junqi Jin
Ziang Yan
Kun Fu
Nan Jiang
Changshui Zhang
22
2
0
29 Aug 2016
Learning to Optimize
Ke Li
Jitendra Malik
13
252
0
06 Jun 2016
Deep Q-Networks for Accelerating the Training of Deep Neural Networks
Jie Fu
AI4CE
32
11
0
05 Jun 2016
Asymptotically exact inference in differentiable generative models
Matthew M. Graham
Amos J. Storkey
BDL
21
33
0
25 May 2016
Programming with a Differentiable Forth Interpreter
Matko Bosnjak
Tim Rocktaschel
Jason Naradowsky
Sebastian Riedel
17
148
0
21 May 2016
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
37
442
0
07 Feb 2016
DrMAD: Distilling Reverse-Mode Automatic Differentiation for Optimizing Hyperparameters of Deep Neural Networks
Jie Fu
Hongyin Luo
Jiashi Feng
K. H. Low
Tat-Seng Chua
24
27
0
05 Jan 2016
Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters
Jelena Luketina
Mathias Berglund
Klaus Greff
T. Raiko
27
173
0
20 Nov 2015
Structured Prediction Energy Networks
David Belanger
Andrew McCallum
GNN
18
219
0
19 Nov 2015
Diversity Networks: Neural Network Compression Using Determinantal Point Processes
Zelda E. Mariet
S. Sra
11
129
0
16 Nov 2015
Speed learning on the fly
Pierre-Yves Massé
Yann Ollivier
23
13
0
08 Nov 2015
Early Stopping is Nonparametric Variational Inference
D. Maclaurin
David Duvenaud
Ryan P. Adams
BDL
30
95
0
06 Apr 2015
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
54
2,750
0
20 Feb 2015
Previous
1
2
3
...
10
8
9