Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.03492
Cited By
Gradient-based Hyperparameter Optimization through Reversible Learning
11 February 2015
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient-based Hyperparameter Optimization through Reversible Learning"
50 / 497 papers shown
Title
Regularization Can Help Mitigate Poisoning Attacks... with the Right Hyperparameters
Javier Carnerero-Cano
Luis Muñoz-González
P. Spencer
Emil C. Lupu
AAML
42
10
0
23 May 2021
An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming
Minkai Xu
Wujie Wang
Shitong Luo
Chence Shi
Yoshua Bengio
Rafael Gómez-Bombarelli
Jian Tang
3DV
37
78
0
15 May 2021
Bilevel Programs Meet Deep Learning: A Unifying View on Inference Learning Methods
Christopher Zach
FedML
16
5
0
15 May 2021
A hyperparameter-tuning approach to automated inverse planning
Kelsey Maass
Aleksandr Aravkin
Minsun Kim
17
3
0
14 May 2021
Exploring the Similarity of Representations in Model-Agnostic Meta-Learning
Thomas Goerttler
Klaus Obermayer
13
4
0
12 May 2021
The Authors Matter: Understanding and Mitigating Implicit Bias in Deep Text Classification
Haochen Liu
Wei Jin
Hamid Karimi
Zitao Liu
Jiliang Tang
8
30
0
06 May 2021
Implicit differentiation for fast hyperparameter selection in non-smooth convex learning
Quentin Bertrand
Quentin Klopfenstein
Mathurin Massias
Mathieu Blondel
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
53
26
0
04 May 2021
Metadata Normalization
Mandy Lu
Qingyu Zhao
Jiequan Zhang
K. Pohl
L. Fei-Fei
Juan Carlos Niebles
Ehsan Adeli
22
20
0
19 Apr 2021
Learning Normal Dynamics in Videos with Meta Prototype Network
Hui Lv
Chong Chen
Zhen Cui
Chunyan Xu
Yong Li
Jian Yang
30
139
0
14 Apr 2021
Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach
Simiao Zuo
Chen Liang
Haoming Jiang
Xiaodong Liu
Pengcheng He
Jianfeng Gao
Weizhu Chen
T. Zhao
55
9
0
11 Apr 2021
Soft-Label Anonymous Gastric X-ray Image Distillation
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
40
51
0
07 Apr 2021
Rethinking Graph Neural Architecture Search from Message-passing
Shaofei Cai
Liang Li
Jincan Deng
Beichen Zhang
Zhengjun Zha
Li Su
Qingming Huang
GNN
AI4CE
19
53
0
26 Mar 2021
How to decay your learning rate
Aitor Lewkowycz
41
24
0
23 Mar 2021
Robust MAML: Prioritization task buffer with adaptive learning process for model-agnostic meta-learning
Thanh Nguyen
Tung M. Luu
T. Pham
Sanzhar Rakhimkul
Chang D. Yoo
22
10
0
15 Mar 2021
BODAME: Bilevel Optimization for Defense Against Model Extraction
Y. Mori
Atsushi Nitanda
Akiko Takeda
MIACV
32
4
0
11 Mar 2021
Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm
Bin Gu
Guodong Liu
Yanfu Zhang
Xiang Geng
Heng-Chiao Huang
36
19
0
17 Feb 2021
Complex Momentum for Optimization in Games
Jonathan Lorraine
David Acuna
Paul Vicol
David Duvenaud
20
9
0
16 Feb 2021
A General Descent Aggregation Framework for Gradient-based Bi-level Optimization
Risheng Liu
Pan Mu
Xiaoming Yuan
Shangzhi Zeng
Jin Zhang
AI4CE
33
36
0
16 Feb 2021
Momentum Residual Neural Networks
Michael E. Sander
Pierre Ablin
Mathieu Blondel
Gabriel Peyré
27
57
0
15 Feb 2021
Lower Bounds and Accelerated Algorithms for Bilevel Optimization
Kaiyi Ji
Yingbin Liang
18
57
0
07 Feb 2021
HYDRA: Hypergradient Data Relevance Analysis for Interpreting Deep Neural Networks
Yuanyuan Chen
Boyang Albert Li
Han Yu
Pengcheng Wu
Chunyan Miao
TDI
24
39
0
04 Feb 2021
Synthetic Dataset Generation of Driver Telematics
Banghee So
J. Boucher
Emiliano A. Valdez
25
24
0
30 Jan 2021
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
59
222
0
27 Jan 2021
Optimizing Hyperparameters in CNNs using Bilevel Programming in Time Series Data
Taniya Seth
Pranab K. Muhuri
14
0
0
19 Jan 2021
On the Turnpike to Design of Deep Neural Nets: Explicit Depth Bounds
T. Faulwasser
Arne-Jens Hempel
S. Streif
16
5
0
08 Jan 2021
HyperMorph: Amortized Hyperparameter Learning for Image Registration
Andrew Hoopes
Malte Hoffmann
Bruce Fischl
John Guttag
Adrian V. Dalca
36
128
0
04 Jan 2021
Poisoning Attacks on Cyber Attack Detectors for Industrial Control Systems
Moshe Kravchik
Battista Biggio
A. Shabtai
AAML
19
28
0
23 Dec 2020
How Robust are Randomized Smoothing based Defenses to Data Poisoning?
Akshay Mehra
B. Kailkhura
Pin-Yu Chen
Jihun Hamm
OOD
AAML
17
32
0
02 Dec 2020
Scaling Down Deep Learning with MNIST-1D
S. Greydanus
Dmitry Kobak
13
20
0
29 Nov 2020
Long Short Term Memory Networks for Bandwidth Forecasting in Mobile Broadband Networks under Mobility
Konstantinos Kousias
A. Pappas
Özgü Alay
A. Argyriou
Michael Riegler
9
1
0
20 Nov 2020
DeepRepair: Style-Guided Repairing for DNNs in the Real-world Operational Environment
Bing Yu
Hua Qi
Qing Guo
Felix Juefei Xu
Xiaofei Xie
L. Ma
Jianjun Zhao
14
5
0
19 Nov 2020
Identification of state functions by physically-guided neural networks with physically-meaningful internal layers
J. Ayensa-Jiménez
M. H. Doweidar
J. A. Sanz-Herrera
Manuel Doblaré
PINN
12
1
0
17 Nov 2020
Convergence Properties of Stochastic Hypergradients
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
22
26
0
13 Nov 2020
Teaching with Commentaries
Aniruddh Raghu
M. Raghu
Simon Kornblith
David Duvenaud
Geoffrey E. Hinton
25
24
0
05 Nov 2020
Meta-learning Transferable Representations with a Single Target Domain
Hong Liu
Jeff Z. HaoChen
Colin Wei
Tengyu Ma
AAML
43
5
0
03 Nov 2020
Dataset Meta-Learning from Kernel Ridge-Regression
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
36
240
0
30 Oct 2020
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
27
24
0
26 Oct 2020
AutoML to Date and Beyond: Challenges and Opportunities
Shubhra (Santu) Karmaker
Md. Mahadi Hassan
Micah J. Smith
Lei Xu
Chengxiang Zhai
K. Veeramachaneni
76
225
0
21 Oct 2020
Negotiating Team Formation Using Deep Reinforcement Learning
Yoram Bachrach
Richard Everett
Edward Hughes
Angeliki Lazaridou
Joel Z Leibo
Marc Lanctot
Michael Bradley Johanson
Wojciech M. Czarnecki
T. Graepel
43
35
0
20 Oct 2020
New Properties of the Data Distillation Method When Working With Tabular Data
Dmitry Medvedev
A. Dýakonov
DD
16
9
0
19 Oct 2020
Bilevel Optimization: Convergence Analysis and Enhanced Design
Kaiyi Ji
Junjie Yang
Yingbin Liang
28
249
0
15 Oct 2020
Bi-level Score Matching for Learning Energy-based Latent Variable Models
Fan Bao
Chongxuan Li
Kun Xu
Hang Su
Jun Zhu
Bo Zhang
33
13
0
15 Oct 2020
Learning Optimal Representations with the Decodable Information Bottleneck
Yann Dubois
Douwe Kiela
D. Schwab
Ramakrishna Vedantam
26
43
0
27 Sep 2020
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
33
62
0
23 Sep 2020
Smoke Testing for Machine Learning: Simple Tests to Discover Severe Defects
Steffen Herbold
Tobias Haar
9
10
0
03 Sep 2020
Improved Bilevel Model: Fast and Optimal Algorithm with Theoretical Guarantee
Junyi Li
Bin Gu
Heng-Chiao Huang
18
41
0
01 Sep 2020
Adaptive Hierarchical Hyper-gradient Descent
Renlong Jie
Junbin Gao
A. Vasnev
Minh-Ngoc Tran
26
5
0
17 Aug 2020
AutoSimulate: (Quickly) Learning Synthetic Data Generation
Harkirat Singh Behl
A. G. Baydin
Ran Gal
Philip Torr
Vibhav Vineet
16
23
0
16 Aug 2020
Efficient hyperparameter optimization by way of PAC-Bayes bound minimization
John J. Cherian
Andrew G. Taube
R. McGibbon
Panagiotis Angelikopoulos
Guy Blanc
M. Snarski
D. D. Richman
J. L. Klepeis
D. Shaw
12
6
0
14 Aug 2020
Network Architecture Search for Domain Adaptation
Yichen Li
Xingchao Peng
OOD
21
15
0
13 Aug 2020
Previous
1
2
3
...
10
5
6
7
8
9
Next