ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.03492
  4. Cited By
Gradient-based Hyperparameter Optimization through Reversible Learning

Gradient-based Hyperparameter Optimization through Reversible Learning

11 February 2015
D. Maclaurin
David Duvenaud
Ryan P. Adams
    DD
ArXivPDFHTML

Papers citing "Gradient-based Hyperparameter Optimization through Reversible Learning"

50 / 497 papers shown
Title
Understanding Cross-Domain Few-Shot Learning Based on Domain Similarity
  and Few-Shot Difficulty
Understanding Cross-Domain Few-Shot Learning Based on Domain Similarity and Few-Shot Difficulty
Jaehoon Oh
Sungnyun Kim
Namgyu Ho
Jin-Hwa Kim
Hwanjun Song
Se-Young Yun
30
34
0
01 Feb 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
E. De Vito
Lorenzo Rosasco
24
12
0
17 Jan 2022
Discrete Simulation Optimization for Tuning Machine Learning Method
  Hyperparameters
Discrete Simulation Optimization for Tuning Machine Learning Method Hyperparameters
V. Ramamohan
Shobhit Singhal
Aditya Gupta
N. Bolia
16
1
0
16 Jan 2022
When less is more: Simplifying inputs aids neural network understanding
When less is more: Simplifying inputs aids neural network understanding
R. Schirrmeister
Rosanne Liu
Sara Hooker
T. Ball
24
5
0
14 Jan 2022
Automated Reinforcement Learning: An Overview
Automated Reinforcement Learning: An Overview
Reza Refaei Afshar
Yingqian Zhang
Joaquin Vanschoren
U. Kaymak
OffRL
36
16
0
13 Jan 2022
DDG-DA: Data Distribution Generation for Predictable Concept Drift
  Adaptation
DDG-DA: Data Distribution Generation for Predictable Concept Drift Adaptation
Wendi Li
Xiao Yang
Weiqing Liu
Yingce Xia
Jiang Bian
DiffM
AI4TS
28
51
0
11 Jan 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
19
67
0
04 Jan 2022
Unbiased Gradient Estimation in Unrolled Computation Graphs with
  Persistent Evolution Strategies
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
27
67
0
27 Dec 2021
Lyapunov Exponents for Diversity in Differentiable Games
Lyapunov Exponents for Diversity in Differentiable Games
Jonathan Lorraine
Paul Vicol
Jack Parker-Holder
Tal Kachman
Luke Metz
Jakob N. Foerster
35
7
0
24 Dec 2021
Automated Deep Learning: Neural Architecture Search Is Not the End
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
25
26
0
16 Dec 2021
A Fully Single Loop Algorithm for Bilevel Optimization without Hessian
  Inverse
A Fully Single Loop Algorithm for Bilevel Optimization without Hessian Inverse
Junyi Li
Bin Gu
Heng-Chiao Huang
26
72
0
09 Dec 2021
Hyper-parameter optimization based on soft actor critic and hierarchical
  mixture regularization
Hyper-parameter optimization based on soft actor critic and hierarchical mixture regularization
Chaoyue Liu
Yulai Zhang
13
0
0
08 Dec 2021
Predicting the success of Gradient Descent for a particular
  Dataset-Architecture-Initialization (DAI)
Predicting the success of Gradient Descent for a particular Dataset-Architecture-Initialization (DAI)
Umang Jain
H. G. Ramaswamy
AI4CE
13
1
0
25 Nov 2021
DAPPER: Label-Free Performance Estimation after Personalization for
  Heterogeneous Mobile Sensing
DAPPER: Label-Free Performance Estimation after Personalization for Heterogeneous Mobile Sensing
Taesik Gong
Yewon Kim
Adiba Orzikulova
Yunxin Liu
Sung Ju Hwang
Jinwoo Shin
Sung-Ju Lee
22
8
0
22 Nov 2021
CONFAIR: Configurable and Interpretable Algorithmic Fairness
CONFAIR: Configurable and Interpretable Algorithmic Fairness
Ankit Kulshrestha
Ilya Safro
FaML
22
2
0
17 Nov 2021
Gradients are Not All You Need
Gradients are Not All You Need
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
30
93
0
10 Nov 2021
On Training Implicit Models
On Training Implicit Models
Zhengyang Geng
Xinyu Zhang
Shaojie Bai
Yisen Wang
Zhouchen Lin
63
69
0
09 Nov 2021
Meta-Learning to Improve Pre-Training
Meta-Learning to Improve Pre-Training
Aniruddh Raghu
Jonathan Lorraine
Simon Kornblith
Matthew B. A. McDermott
David Duvenaud
24
30
0
02 Nov 2021
Learning where to learn: Gradient sparsity in meta and continual
  learning
Learning where to learn: Gradient sparsity in meta and continual learning
J. Oswald
Dominic Zhao
Seijin Kobayashi
Simon Schug
Massimo Caccia
Nicolas Zucchet
João Sacramento
CLL
17
46
0
27 Oct 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update
  Hyperparameters by Implicit Differentiation
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
28
9
0
20 Oct 2021
Differentiable Rendering with Perturbed Optimizers
Differentiable Rendering with Perturbed Optimizers
Quentin Le Lidec
Ivan Laptev
Cordelia Schmid
Justin Carpentier
24
15
0
18 Oct 2021
On the Convergence Theory for Hessian-Free Bilevel Algorithms
On the Convergence Theory for Hessian-Free Bilevel Algorithms
Daouda Sow
Kaiyi Ji
Yingbin Liang
28
28
0
13 Oct 2021
Which Samples Should be Learned First: Easy or Hard?
Which Samples Should be Learned First: Easy or Hard?
Xiaoling Zhou
Ou Wu
26
17
0
11 Oct 2021
Value-Function-based Sequential Minimization for Bi-level Optimization
Value-Function-based Sequential Minimization for Bi-level Optimization
Risheng Liu
Xuan Liu
Shangzhi Zeng
Jin Zhang
Yixuan Zhang
40
30
0
11 Oct 2021
Online Hyperparameter Meta-Learning with Hypergradient Distillation
Online Hyperparameter Meta-Learning with Hypergradient Distillation
Haebeom Lee
Hayeon Lee
Jaewoong Shin
Eunho Yang
Timothy M. Hospedales
Sung Ju Hwang
DD
39
2
0
06 Oct 2021
Differentiable Equilibrium Computation with Decision Diagrams for
  Stackelberg Models of Combinatorial Congestion Games
Differentiable Equilibrium Computation with Decision Diagrams for Stackelberg Models of Combinatorial Congestion Games
Shinsaku Sakaue
Kengo Nakamura
14
3
0
05 Oct 2021
Inducing Equilibria via Incentives: Simultaneous Design-and-Play Ensures
  Global Convergence
Inducing Equilibria via Incentives: Simultaneous Design-and-Play Ensures Global Convergence
Boyi Liu
Jiayang Li
Zhuoran Yang
Hoi-To Wai
Mingyi Hong
Y. Nie
Zhaoran Wang
66
18
0
04 Oct 2021
Towards Gradient-based Bilevel Optimization with Non-convex Followers
  and Beyond
Towards Gradient-based Bilevel Optimization with Non-convex Followers and Beyond
Risheng Liu
Yaohua Liu
Shangzhi Zeng
Jin Zhang
24
80
0
01 Oct 2021
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems
  for HPO
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
46
100
0
14 Sep 2021
DHA: End-to-End Joint Optimization of Data Augmentation Policy,
  Hyper-parameter and Architecture
DHA: End-to-End Joint Optimization of Data Augmentation Policy, Hyper-parameter and Architecture
Kaichen Zhou
Lanqing Hong
Shuailiang Hu
Fengwei Zhou
Binxin Ru
Jiashi Feng
Zhenguo Li
62
10
0
13 Sep 2021
Bootstrapped Meta-Learning
Bootstrapped Meta-Learning
Sebastian Flennerhag
Yannick Schroecker
Tom Zahavy
Hado van Hasselt
David Silver
Satinder Singh
38
59
0
09 Sep 2021
Normal Learning in Videos with Attention Prototype Network
Normal Learning in Videos with Attention Prototype Network
Chao Hu
Fan Wu
Weijie Wu
Weibin Qiu
Shengxin Lai
17
1
0
25 Aug 2021
m-RevNet: Deep Reversible Neural Networks with Momentum
Duo Li
Shangqi Gao
36
5
0
12 Aug 2021
Modular Meta-Learning for Power Control via Random Edge Graph Neural
  Networks
Modular Meta-Learning for Power Control via Random Edge Graph Neural Networks
I. Nikoloska
Osvaldo Simeone
33
22
0
04 Aug 2021
Bayesian Active Meta-Learning for Few Pilot Demodulation and
  Equalization
Bayesian Active Meta-Learning for Few Pilot Demodulation and Equalization
K. Cohen
Sangwoo Park
Osvaldo Simeone
S. Shamai
23
12
0
02 Aug 2021
Differentiable Annealed Importance Sampling and the Perils of Gradient
  Noise
Differentiable Annealed Importance Sampling and the Perils of Gradient Noise
Guodong Zhang
Kyle Hsu
Jianing Li
Chelsea Finn
Roger C. Grosse
11
39
0
21 Jul 2021
Soft Layer Selection with Meta-Learning for Zero-Shot Cross-Lingual
  Transfer
Soft Layer Selection with Meta-Learning for Zero-Shot Cross-Lingual Transfer
Weijia Xu
Batool Haider
Jason Krone
Saab Mansour
23
7
0
21 Jul 2021
Can we globally optimize cross-validation loss? Quasiconvexity in ridge
  regression
Can we globally optimize cross-validation loss? Quasiconvexity in ridge regression
William T. Stephenson
Zachary Frangella
Madeleine Udell
Tamara Broderick
22
12
0
19 Jul 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
448
0
13 Jul 2021
iDARTS: Differentiable Architecture Search with Stochastic Implicit
  Gradients
iDARTS: Differentiable Architecture Search with Stochastic Implicit Gradients
Miao Zhang
Steven W. Su
Shirui Pan
Xiaojun Chang
Ehsan Abbasnejad
Reza Haffari
24
68
0
21 Jun 2021
EvoGrad: Efficient Gradient-Based Meta-Learning and Hyperparameter
  Optimization
EvoGrad: Efficient Gradient-Based Meta-Learning and Hyperparameter Optimization
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
20
20
0
19 Jun 2021
Graph Contrastive Learning Automated
Graph Contrastive Learning Automated
Yuning You
Tianlong Chen
Yang Shen
Zhangyang Wang
24
447
0
10 Jun 2021
Provably Faster Algorithms for Bilevel Optimization
Provably Faster Algorithms for Bilevel Optimization
Junjie Yang
Kaiyi Ji
Yingbin Liang
49
132
0
08 Jun 2021
Stability and Generalization of Bilevel Programming in Hyperparameter
  Optimization
Stability and Generalization of Bilevel Programming in Hyperparameter Optimization
Fan Bao
Guoqiang Wu
Chongxuan Li
Jun Zhu
Bo Zhang
30
30
0
08 Jun 2021
Shifting Transformation Learning for Out-of-Distribution Detection
Shifting Transformation Learning for Out-of-Distribution Detection
Sina Mohseni
Arash Vahdat
J. Yadawa
OODD
30
7
0
07 Jun 2021
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
AI4CE
19
5
0
04 Jun 2021
A Generalizable Approach to Learning Optimizers
A Generalizable Approach to Learning Optimizers
Diogo Almeida
Clemens Winter
Jie Tang
Wojciech Zaremba
AI4CE
19
29
0
02 Jun 2021
Energy-Efficient and Federated Meta-Learning via Projected Stochastic
  Gradient Ascent
Energy-Efficient and Federated Meta-Learning via Projected Stochastic Gradient Ascent
Anis Elgabli
Chaouki Ben Issaid
Amrit Singh Bedi
M. Bennis
Vaneet Aggarwal
FedML
21
4
0
31 May 2021
Training With Data Dependent Dynamic Learning Rates
Training With Data Dependent Dynamic Learning Rates
Shreyas Saxena
Nidhi Vyas
D. DeCoste
ODL
6
1
0
27 May 2021
Previous
123456...8910
Next