Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.03492
Cited By
Gradient-based Hyperparameter Optimization through Reversible Learning
11 February 2015
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient-based Hyperparameter Optimization through Reversible Learning"
50 / 497 papers shown
Title
Understanding Cross-Domain Few-Shot Learning Based on Domain Similarity and Few-Shot Difficulty
Jaehoon Oh
Sungnyun Kim
Namgyu Ho
Jin-Hwa Kim
Hwanjun Song
Se-Young Yun
30
34
0
01 Feb 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
E. De Vito
Lorenzo Rosasco
24
12
0
17 Jan 2022
Discrete Simulation Optimization for Tuning Machine Learning Method Hyperparameters
V. Ramamohan
Shobhit Singhal
Aditya Gupta
N. Bolia
16
1
0
16 Jan 2022
When less is more: Simplifying inputs aids neural network understanding
R. Schirrmeister
Rosanne Liu
Sara Hooker
T. Ball
24
5
0
14 Jan 2022
Automated Reinforcement Learning: An Overview
Reza Refaei Afshar
Yingqian Zhang
Joaquin Vanschoren
U. Kaymak
OffRL
36
16
0
13 Jan 2022
DDG-DA: Data Distribution Generation for Predictable Concept Drift Adaptation
Wendi Li
Xiao Yang
Weiqing Liu
Yingce Xia
Jiang Bian
DiffM
AI4TS
28
51
0
11 Jan 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
19
67
0
04 Jan 2022
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
27
67
0
27 Dec 2021
Lyapunov Exponents for Diversity in Differentiable Games
Jonathan Lorraine
Paul Vicol
Jack Parker-Holder
Tal Kachman
Luke Metz
Jakob N. Foerster
35
7
0
24 Dec 2021
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
25
26
0
16 Dec 2021
A Fully Single Loop Algorithm for Bilevel Optimization without Hessian Inverse
Junyi Li
Bin Gu
Heng-Chiao Huang
26
72
0
09 Dec 2021
Hyper-parameter optimization based on soft actor critic and hierarchical mixture regularization
Chaoyue Liu
Yulai Zhang
13
0
0
08 Dec 2021
Predicting the success of Gradient Descent for a particular Dataset-Architecture-Initialization (DAI)
Umang Jain
H. G. Ramaswamy
AI4CE
13
1
0
25 Nov 2021
DAPPER: Label-Free Performance Estimation after Personalization for Heterogeneous Mobile Sensing
Taesik Gong
Yewon Kim
Adiba Orzikulova
Yunxin Liu
Sung Ju Hwang
Jinwoo Shin
Sung-Ju Lee
22
8
0
22 Nov 2021
CONFAIR: Configurable and Interpretable Algorithmic Fairness
Ankit Kulshrestha
Ilya Safro
FaML
22
2
0
17 Nov 2021
Gradients are Not All You Need
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
30
93
0
10 Nov 2021
On Training Implicit Models
Zhengyang Geng
Xinyu Zhang
Shaojie Bai
Yisen Wang
Zhouchen Lin
63
69
0
09 Nov 2021
Meta-Learning to Improve Pre-Training
Aniruddh Raghu
Jonathan Lorraine
Simon Kornblith
Matthew B. A. McDermott
David Duvenaud
24
30
0
02 Nov 2021
Learning where to learn: Gradient sparsity in meta and continual learning
J. Oswald
Dominic Zhao
Seijin Kobayashi
Simon Schug
Massimo Caccia
Nicolas Zucchet
João Sacramento
CLL
17
46
0
27 Oct 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
28
9
0
20 Oct 2021
Differentiable Rendering with Perturbed Optimizers
Quentin Le Lidec
Ivan Laptev
Cordelia Schmid
Justin Carpentier
24
15
0
18 Oct 2021
On the Convergence Theory for Hessian-Free Bilevel Algorithms
Daouda Sow
Kaiyi Ji
Yingbin Liang
28
28
0
13 Oct 2021
Which Samples Should be Learned First: Easy or Hard?
Xiaoling Zhou
Ou Wu
26
17
0
11 Oct 2021
Value-Function-based Sequential Minimization for Bi-level Optimization
Risheng Liu
Xuan Liu
Shangzhi Zeng
Jin Zhang
Yixuan Zhang
40
30
0
11 Oct 2021
Online Hyperparameter Meta-Learning with Hypergradient Distillation
Haebeom Lee
Hayeon Lee
Jaewoong Shin
Eunho Yang
Timothy M. Hospedales
Sung Ju Hwang
DD
39
2
0
06 Oct 2021
Differentiable Equilibrium Computation with Decision Diagrams for Stackelberg Models of Combinatorial Congestion Games
Shinsaku Sakaue
Kengo Nakamura
14
3
0
05 Oct 2021
Inducing Equilibria via Incentives: Simultaneous Design-and-Play Ensures Global Convergence
Boyi Liu
Jiayang Li
Zhuoran Yang
Hoi-To Wai
Mingyi Hong
Y. Nie
Zhaoran Wang
66
18
0
04 Oct 2021
Towards Gradient-based Bilevel Optimization with Non-convex Followers and Beyond
Risheng Liu
Yaohua Liu
Shangzhi Zeng
Jin Zhang
24
80
0
01 Oct 2021
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
46
100
0
14 Sep 2021
DHA: End-to-End Joint Optimization of Data Augmentation Policy, Hyper-parameter and Architecture
Kaichen Zhou
Lanqing Hong
Shuailiang Hu
Fengwei Zhou
Binxin Ru
Jiashi Feng
Zhenguo Li
62
10
0
13 Sep 2021
Bootstrapped Meta-Learning
Sebastian Flennerhag
Yannick Schroecker
Tom Zahavy
Hado van Hasselt
David Silver
Satinder Singh
38
59
0
09 Sep 2021
Normal Learning in Videos with Attention Prototype Network
Chao Hu
Fan Wu
Weijie Wu
Weibin Qiu
Shengxin Lai
17
1
0
25 Aug 2021
m-RevNet: Deep Reversible Neural Networks with Momentum
Duo Li
Shangqi Gao
36
5
0
12 Aug 2021
Modular Meta-Learning for Power Control via Random Edge Graph Neural Networks
I. Nikoloska
Osvaldo Simeone
33
22
0
04 Aug 2021
Bayesian Active Meta-Learning for Few Pilot Demodulation and Equalization
K. Cohen
Sangwoo Park
Osvaldo Simeone
S. Shamai
23
12
0
02 Aug 2021
Differentiable Annealed Importance Sampling and the Perils of Gradient Noise
Guodong Zhang
Kyle Hsu
Jianing Li
Chelsea Finn
Roger C. Grosse
11
39
0
21 Jul 2021
Soft Layer Selection with Meta-Learning for Zero-Shot Cross-Lingual Transfer
Weijia Xu
Batool Haider
Jason Krone
Saab Mansour
23
7
0
21 Jul 2021
Can we globally optimize cross-validation loss? Quasiconvexity in ridge regression
William T. Stephenson
Zachary Frangella
Madeleine Udell
Tamara Broderick
22
12
0
19 Jul 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
448
0
13 Jul 2021
iDARTS: Differentiable Architecture Search with Stochastic Implicit Gradients
Miao Zhang
Steven W. Su
Shirui Pan
Xiaojun Chang
Ehsan Abbasnejad
Reza Haffari
24
68
0
21 Jun 2021
EvoGrad: Efficient Gradient-Based Meta-Learning and Hyperparameter Optimization
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
20
20
0
19 Jun 2021
Graph Contrastive Learning Automated
Yuning You
Tianlong Chen
Yang Shen
Zhangyang Wang
24
447
0
10 Jun 2021
Provably Faster Algorithms for Bilevel Optimization
Junjie Yang
Kaiyi Ji
Yingbin Liang
49
132
0
08 Jun 2021
Stability and Generalization of Bilevel Programming in Hyperparameter Optimization
Fan Bao
Guoqiang Wu
Chongxuan Li
Jun Zhu
Bo Zhang
30
30
0
08 Jun 2021
Shifting Transformation Learning for Out-of-Distribution Detection
Sina Mohseni
Arash Vahdat
J. Yadawa
OODD
30
7
0
07 Jun 2021
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
AI4CE
19
5
0
04 Jun 2021
A Generalizable Approach to Learning Optimizers
Diogo Almeida
Clemens Winter
Jie Tang
Wojciech Zaremba
AI4CE
19
29
0
02 Jun 2021
Energy-Efficient and Federated Meta-Learning via Projected Stochastic Gradient Ascent
Anis Elgabli
Chaouki Ben Issaid
Amrit Singh Bedi
M. Bennis
Vaneet Aggarwal
FedML
21
4
0
31 May 2021
Training With Data Dependent Dynamic Learning Rates
Shreyas Saxena
Nidhi Vyas
D. DeCoste
ODL
6
1
0
27 May 2021
Previous
1
2
3
4
5
6
...
8
9
10
Next