Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.03492
Cited By
Gradient-based Hyperparameter Optimization through Reversible Learning
11 February 2015
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient-based Hyperparameter Optimization through Reversible Learning"
50 / 497 papers shown
Title
Importance-Aware Adaptive Dataset Distillation
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
28
6
0
29 Jan 2024
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and Convergence Analysis
Jie Hao
Xiaochuan Gong
Mingrui Liu
33
7
0
17 Jan 2024
A First-Order Multi-Gradient Algorithm for Multi-Objective Bi-Level Optimization
Feiyang Ye
Baijiong Lin
Xiao-Qun Cao
Yu Zhang
Ivor Tsang
50
6
0
17 Jan 2024
MADA: Meta-Adaptive Optimizers through hyper-gradient Descent
Kaan Ozkara
Can Karakus
Parameswaran Raman
Mingyi Hong
Shoham Sabach
B. Kveton
V. Cevher
27
2
0
17 Jan 2024
Online Algorithmic Recourse by Collective Action
Elliot Creager
Richard Zemel
20
3
0
29 Dec 2023
MIM4DD: Mutual Information Maximization for Dataset Distillation
Yuzhang Shang
Zhihang Yuan
Yan Yan
DD
40
14
0
27 Dec 2023
Learning to Reweight for Graph Neural Network
Zhengyu Chen
Teng Xiao
Kun Kuang
Zheqi Lv
Min Zhang
Jinluan Yang
Chengqiang Lu
Hongxia Yang
Fei Wu
OOD
37
1
0
19 Dec 2023
Coupled Confusion Correction: Learning from Crowds with Sparse Annotations
Hansong Zhang
Shikun Li
Dan Zeng
Chenggang Yan
Shiming Ge
22
13
0
12 Dec 2023
Boosting the Cross-Architecture Generalization of Dataset Distillation through an Empirical Study
Lirui Zhao
Yuxin Zhang
Rongrong Ji
Rongrong Ji
32
1
0
09 Dec 2023
Using Large Language Models for Hyperparameter Optimization
Michael Ruogu Zhang
Nishkrit Desai
Juhan Bae
Jonathan Lorraine
Jimmy Ba
34
51
0
07 Dec 2023
Model-Based Reparameterization Policy Gradient Methods: Theory and Practical Algorithms
Shenao Zhang
Boyi Liu
Zhaoran Wang
Tuo Zhao
32
2
0
30 Oct 2023
TorchDEQ: A Library for Deep Equilibrium Models
Zhengyang Geng
J. Zico Kolter
VLM
59
12
0
28 Oct 2023
Learning to Rank for Active Learning via Multi-Task Bilevel Optimization
Zixin Ding
Si-An Chen
Ruoxi Jia
Yuxin Chen
35
1
0
25 Oct 2023
Fast Graph Condensation with Structure-based Neural Tangent Kernel
Lin Wang
Wenqi Fan
Jiatong Li
Yao Ma
Qing Li
DD
34
27
0
17 Oct 2023
Farzi Data: Autoregressive Data Distillation
Noveen Sachdeva
Zexue He
Wang-Cheng Kang
Jianmo Ni
D. Cheng
Julian McAuley
DD
23
3
0
15 Oct 2023
Differential Evolution Algorithm based Hyper-Parameters Selection of Convolutional Neural Network for Speech Command Recognition
Sandipan Dhar
Anuvab Sen
Aritra Bandyopadhyay
N. D. Jana
Arjun Ghosh
Zahra Sarayloo
9
0
0
13 Oct 2023
Making Scalable Meta Learning Practical
Sang Keun Choe
Sanket Vaibhav Mehta
Hwijeen Ahn
W. Neiswanger
Pengtao Xie
Emma Strubell
Eric P. Xing
49
15
0
09 Oct 2023
FedHyper: A Universal and Robust Learning Rate Scheduler for Federated Learning with Hypergradient Descent
Ziyao Wang
Jianyu Wang
Ang Li
FedML
32
2
0
04 Oct 2023
Online Sensitivity Optimization in Differentially Private Learning
Filippo Galli
C. Palamidessi
Tommaso Cucinotta
22
1
0
02 Oct 2023
Learning How to Propagate Messages in Graph Neural Networks
Teng Xiao
Zhengyu Chen
Donglin Wang
Suhang Wang
GNN
34
76
0
01 Oct 2023
Hybrid Algorithm Selection and Hyperparameter Tuning on Distributed Machine Learning Resources: A Hierarchical Agent-based Approach
Ahmad Esmaeili
Julia Taylor Rayz
Eric T. Matson
27
0
0
12 Sep 2023
CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra
Andres Potapczynski
Marc Finzi
Geoff Pleiss
Andrew Gordon Wilson
20
7
0
06 Sep 2023
Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter Selection in Short-Term Weather Forecasting
Anuvab Sen
A. Mazumder
Dibyarup Dutta
Udayon Sen
Pathikrit Syam
Sandipan Dhar
TPM
17
5
0
05 Sep 2023
Relax and penalize: a new bilevel approach to mixed-binary hyperparameter optimization
M. D. Santis
Jordan Frécon
Francesco Rinaldi
Saverio Salzo
Martin Schmidt
Martin Schmidt
53
0
0
21 Aug 2023
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
Mohammad Salehi
Subhadip Mukherjee
Lindon Roberts
Matthias Joachim Ehrhardt
26
5
0
19 Aug 2023
INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order Gradient Computations in Implicit Neural Representation Processing
Stefan Abi-Karam
Rishov Sarkar
Dejia Xu
Zhiwen Fan
Zhangyang Wang
Cong Hao
6
4
0
11 Aug 2023
Non-Convex Bilevel Optimization with Time-Varying Objective Functions
Sen-Fon Lin
Daouda Sow
Kaiyi Ji
Yitao Liang
Ness B. Shroff
36
2
0
07 Aug 2023
HomOpt: A Homotopy-Based Hyperparameter Optimization Method
Sophia J. Abraham
K. D. G. Maduranga
Jeffery Kinnison
Zachariah Carmichael
Jonathan D. Hauenstein
Walter J. Scheirer
26
1
0
07 Aug 2023
An Introduction to Bi-level Optimization: Foundations and Applications in Signal Processing and Machine Learning
Yihua Zhang
Prashant Khanduri
Ioannis C. Tsaknakis
Yuguang Yao
Min-Fong Hong
Sijia Liu
AI4CE
44
25
0
01 Aug 2023
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
33
2
0
01 Aug 2023
Automatic Data Augmentation Learning using Bilevel Optimization for Histopathological Images
Saypraseuth Mounsaveng
I. Laradji
David Vázquez
M. Pedersoli
Ismail Ben Ayed
OOD
25
1
0
21 Jul 2023
Near-Optimal Nonconvex-Strongly-Convex Bilevel Optimization with Fully First-Order Oracles
Le‐Yu Chen
Yaohua Ma
J.N. Zhang
86
2
0
26 Jun 2023
Optimal Algorithms for Stochastic Bilevel Optimization under Relaxed Smoothness Conditions
Xuxing Chen
Tesi Xiao
Krishnakumar Balasubramanian
27
24
0
21 Jun 2023
Practical First-Order Bayesian Optimization Algorithms
Utkarsh Prakash
Aryan Chollera
Kushagra Khatwani
P. K. J.
Tejas Bodas
30
1
0
19 Jun 2023
AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks
Alexander Tornede
Difan Deng
Theresa Eimer
Joseph Giovanelli
Aditya Mohan
...
Sarah Segel
Daphne Theodorakopoulos
Tanja Tornede
Henning Wachsmuth
Marius Lindauer
28
23
0
13 Jun 2023
Stepsize Learning for Policy Gradient Methods in Contextual Markov Decision Processes
Luca Sabbioni
Francesco Corda
Marcello Restelli
24
0
0
13 Jun 2023
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models
Alexander Lin
Bahareh Tolooshams
Yves Atchadé
Demba E. Ba
36
1
0
05 Jun 2023
Searching for Optimal Per-Coordinate Step-sizes with Multidimensional Backtracking
Frederik Kunstner
V. S. Portella
Mark W. Schmidt
Nick Harvey
26
8
0
05 Jun 2023
A Generalized Alternating Method for Bilevel Learning under the Polyak-Łojasiewicz Condition
Quan-Wu Xiao
Songtao Lu
Tianyi Chen
24
2
0
04 Jun 2023
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
26
0
0
02 Jun 2023
Hyperparameter Learning under Data Poisoning: Analysis of the Influence of Regularization via Multiobjective Bilevel Optimization
Javier Carnerero-Cano
Luis Muñoz-González
P. Spencer
Emil C. Lupu
AAML
13
3
0
02 Jun 2023
SimFBO: Towards Simple, Flexible and Communication-efficient Federated Bilevel Learning
Yifan Yang
Peiyao Xiao
Kaiyi Ji
FedML
26
15
0
30 May 2023
Sharpness-Aware Data Poisoning Attack
Pengfei He
Han Xu
J. Ren
Yingqian Cui
Hui Liu
Charu C. Aggarwal
Jiliang Tang
AAML
44
7
0
24 May 2023
ChatGPT as your Personal Data Scientist
Md. Mahadi Hassan
Alex Knipper
Shubhra (Santu) Karmaker
LM&MA
LLMAG
AI4CE
50
18
0
23 May 2023
Effective Bilevel Optimization via Minimax Reformulation
Xiaoyu Wang
Rui Pan
Renjie Pi
Tong Zhang
42
1
0
22 May 2023
Materials Informatics: An Algorithmic Design Rule
B. Bishnoi
14
0
0
05 May 2023
A Survey on Dataset Distillation: Approaches, Applications and Future Directions
Jiahui Geng
Zongxiong Chen
Yuandou Wang
Herbert Woisetschlaeger
Sonja Schimmler
Ruben Mayer
Zhiming Zhao
Chunming Rong
DD
64
26
0
03 May 2023
FedAVO: Improving Communication Efficiency in Federated Learning with African Vultures Optimizer
Md Zarif Hossain
Ahmed Imteaj
FedML
32
5
0
02 May 2023
Low-Variance Gradient Estimation in Unrolled Computation Graphs with ES-Single
Paul Vicol
Zico Kolter
Kevin Swersky
21
6
0
21 Apr 2023
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li
James Harrison
Jascha Narain Sohl-Dickstein
Virginia Smith
Luke Metz
54
5
0
21 Apr 2023
Previous
1
2
3
4
5
...
8
9
10
Next