ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.02129
24
1

Decentralized Hyper-Gradient Computation over Time-Varying Directed Networks

5 October 2022
Naoyuki Terashita
Satoshi Hara
    FedML
ArXivPDFHTML
Abstract

This paper addresses the communication issues when estimating hyper-gradients in decentralized federated learning (FL). Hyper-gradients in decentralized FL quantifies how the performance of globally shared optimal model is influenced by the perturbations in clients' hyper-parameters. In prior work, clients trace this influence through the communication of Hessian matrices over a static undirected network, resulting in (i) excessive communication costs and (ii) inability to make use of more efficient and robust networks, namely, time-varying directed networks. To solve these issues, we introduce an alternative optimality condition for FL using an averaging operation on model parameters and gradients. We then employ Push-Sum as the averaging operation, which is a consensus optimization technique for time-varying directed networks. As a result, the hyper-gradient estimator derived from our optimality condition enjoys two desirable properties; (i) it only requires Push-Sum communication of vectors and (ii) it can operate over time-varying directed networks. We confirm the convergence of our estimator to the true hyper-gradient both theoretically and empirically, and we further demonstrate that it enables two novel applications: decentralized influence estimation and personalization over time-varying networks.

View on arXiv
Comments on this paper