Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.03492
Cited By
Gradient-based Hyperparameter Optimization through Reversible Learning
11 February 2015
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient-based Hyperparameter Optimization through Reversible Learning"
50 / 497 papers shown
Title
Learning Discrete Structures for Graph Neural Networks
Luca Franceschi
Mathias Niepert
Massimiliano Pontil
X. He
GNN
24
410
0
28 Mar 2019
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
M. Mackay
Paul Vicol
Jonathan Lorraine
David Duvenaud
Roger C. Grosse
27
164
0
07 Mar 2019
Quantifying contribution and propagation of error from computational steps, algorithms and hyperparameter choices in image classification pipelines
Aritra Chowdhury
M. Magdon-Ismail
B. Yener
30
0
0
21 Feb 2019
Random Search and Reproducibility for Neural Architecture Search
Liam Li
Ameet Talwalkar
OOD
33
717
0
20 Feb 2019
Learning to Generalize from Sparse and Underspecified Rewards
Rishabh Agarwal
Chen Liang
Dale Schuurmans
Mohammad Norouzi
OffRL
49
97
0
19 Feb 2019
Meta-Curvature
Eunbyung Park
Junier B. Oliva
BDL
18
122
0
09 Feb 2019
Hyper-parameter Tuning under a Budget Constraint
Zhiyun Lu
Chao-Kai Chiang
Fei Sha
9
17
0
01 Feb 2019
Coordinating the Crowd: Inducing Desirable Equilibria in Non-Cooperative Systems
D. Mguni
Joel Jennings
Sergio Valcarcel Macua
Emilio Sison
S. Ceppi
Enrique Munoz de Cote
8
39
0
30 Jan 2019
BlinkML: Efficient Maximum Likelihood Estimation with Probabilistic Guarantees
Yongjoo Park
Jingyi Qing
Xiaoyang Shen
Barzan Mozafari
VLM
8
27
0
26 Dec 2018
Deep Inverse Optimization
Yingcong Tan
Andrew Delong
Daria Terekhov
14
22
0
03 Dec 2018
Deep Learning Application in Security and Privacy -- Theory and Practice: A Position Paper
Julia A. Meister
Raja Naeem Akram
K. Markantonakis
16
0
0
01 Dec 2018
Dataset Distillation
Tongzhou Wang
Jun-Yan Zhu
Antonio Torralba
Alexei A. Efros
DD
13
291
0
27 Nov 2018
Do Normalization Layers in a Deep ConvNet Really Need to Be Distinct?
Ping Luo
Zhanglin Peng
Jiamin Ren
Ruimao Zhang
FAtt
OOD
6
7
0
19 Nov 2018
A Batched Scalable Multi-Objective Bayesian Optimization Algorithm
Xi Lin
Hui-Ling Zhen
Zhenhua Li
Qingfu Zhang
Sam Kwong
6
11
0
04 Nov 2018
Efficient Online Hyperparameter Optimization for Kernel Ridge Regression with Applications to Traffic Time Series Prediction
Hongyuan Zhan
G. Gomes
Xin Li
Kamesh Madduri
Kesheng Wu
11
6
0
01 Nov 2018
Towards learning-to-learn
B. Lansdell
Konrad Paul Kording
23
19
0
01 Nov 2018
Learning to Teach with Dynamic Loss Functions
Lijun Wu
Fei Tian
Yingce Xia
Yang Fan
Tao Qin
Jianhuang Lai
Tie-Yan Liu
19
111
0
29 Oct 2018
Reversible Recurrent Neural Networks
M. Mackay
Paul Vicol
Jimmy Ba
Roger C. Grosse
6
52
0
25 Oct 2018
Truncated Back-propagation for Bilevel Optimization
Amirreza Shaban
Ching-An Cheng
Nathan Hatch
Byron Boots
36
262
0
25 Oct 2018
Understanding and correcting pathologies in the training of learned optimizers
Luke Metz
Niru Maheswaranathan
Jeremy Nixon
C. Freeman
Jascha Narain Sohl-Dickstein
ODL
25
149
0
24 Oct 2018
AutoLoss: Learning Discrete Schedules for Alternate Optimization
Haowen Xu
Huan Zhang
Zhiting Hu
Xiaodan Liang
Ruslan Salakhutdinov
Eric P. Xing
26
30
0
04 Oct 2018
Learning with Random Learning Rates
Léonard Blier
Pierre Wolinski
Yann Ollivier
OOD
18
20
0
02 Oct 2018
Interactive Agent Modeling by Learning to Probe
Tianmin Shu
Caiming Xiong
Ying Nian Wu
Song-Chun Zhu
LM&Ro
16
2
0
01 Oct 2018
M
3
^3
3
RL: Mind-aware Multi-agent Management Reinforcement Learning
Tianmin Shu
Yuandong Tian
20
53
0
29 Sep 2018
Deep Bilevel Learning
Simon Jenni
Paolo Favaro
NoLa
11
114
0
05 Sep 2018
TherML: Thermodynamics of Machine Learning
Alexander A. Alemi
Ian S. Fischer
DRL
AI4CE
24
27
0
11 Jul 2018
Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations
Jennifer B. Erway
J. Griffin
Roummel F. Marcia
Riadh Omheni
8
24
0
01 Jul 2018
Guided evolutionary strategies: Augmenting random search with surrogate gradients
Niru Maheswaranathan
Luke Metz
George Tucker
Dami Choi
Jascha Narain Sohl-Dickstein
22
20
0
26 Jun 2018
Attention-based Few-Shot Person Re-identification Using Meta Learning
Alireza Rahimpour
Hairong Qi
19
5
0
24 Jun 2018
DARTS: Differentiable Architecture Search
Hanxiao Liu
Karen Simonyan
Yiming Yang
82
4,301
0
24 Jun 2018
Far-HO: A Bilevel Programming Package for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
P. Frasconi
17
2
0
13 Jun 2018
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
110
717
0
13 Jun 2018
Learning in Integer Latent Variable Models with Nested Automatic Differentiation
Daniel Sheldon
Kevin Winner
Debora Sujono
15
3
0
08 Jun 2018
Parallel Architecture and Hyperparameter Search via Successive Halving and Classification
Manoj Kumar
George E. Dahl
Vijay Vasudevan
Mohammad Norouzi
20
25
0
25 May 2018
Meta-Gradient Reinforcement Learning
Zhongwen Xu
H. V. Hasselt
David Silver
38
324
0
24 May 2018
Neural Generative Models for Global Optimization with Gradients
Louis Faury
Flavian Vasile
Clément Calauzènes
Olivier Fercoq
6
2
0
22 May 2018
Meta-learning with differentiable closed-form solvers
Luca Bertinetto
João F. Henriques
Philip Torr
Andrea Vedaldi
ODL
30
920
0
21 May 2018
Optimizing for Generalization in Machine Learning with Cross-Validation Gradients
Shane T. Barratt
Rishi Sharma
14
7
0
18 May 2018
Regularization Learning Networks: Deep Learning for Tabular Datasets
Ira Shavitt
E. Segal
AI4CE
26
20
0
16 May 2018
Towards Autonomous Reinforcement Learning: Automatic Setting of Hyper-parameters using Bayesian Optimization
Juan Cruz Barsce
J. Palombarini
E. Martínez
GP
16
33
0
12 May 2018
Holarchic Structures for Decentralized Deep Learning - A Performance Analysis
Evangelos Pournaras
S. Yadhunathan
A. Diaconescu
6
13
0
07 May 2018
Reinforced Co-Training
Jiawei Wu
Lei Li
William Yang Wang
OffRL
22
51
0
17 Apr 2018
Representing smooth functions as compositions of near-identity functions with implications for deep network optimization
Peter L. Bartlett
S. Evans
Philip M. Long
73
31
0
13 Apr 2018
Meta-Learning Update Rules for Unsupervised Representation Learning
Luke Metz
Niru Maheswaranathan
Brian Cheung
Jascha Narain Sohl-Dickstein
SSL
OOD
22
121
0
31 Mar 2018
MLtuner: System Support for Automatic Machine Learning Tuning
Henggang Cui
G. Ganger
Phillip B. Gibbons
14
6
0
20 Mar 2018
Reviving and Improving Recurrent Back-Propagation
Renjie Liao
Yuwen Xiong
Ethan Fetaya
Lisa Zhang
Kijung Yoon
Xaq Pitkow
R. Urtasun
R. Zemel
BDL
38
118
0
16 Mar 2018
Pseudo-task Augmentation: From Deep Multitask Learning to Intratask Sharing---and Back
Elliot Meyerson
Risto Miikkulainen
25
45
0
11 Mar 2018
Evolutionary Architecture Search For Deep Multitask Networks
J. Liang
Elliot Meyerson
Risto Miikkulainen
39
120
0
10 Mar 2018
Understanding Short-Horizon Bias in Stochastic Meta-Optimization
Yuhuai Wu
Mengye Ren
Renjie Liao
Roger C. Grosse
22
138
0
06 Mar 2018
Stochastic Hyperparameter Optimization through Hypernetworks
Jonathan Lorraine
David Duvenaud
41
139
0
26 Feb 2018
Previous
1
2
3
...
10
8
9
Next