ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.04815
32
42

Scalable MCMC for Mixed Membership Stochastic Blockmodels

16 October 2015
Wenzhe Li
Sungjin Ahn
Max Welling
    BDL
ArXivPDFHTML
Abstract

We propose a stochastic gradient Markov chain Monte Carlo (SG-MCMC) algorithm for scalable inference in mixed-membership stochastic blockmodels (MMSB). Our algorithm is based on the stochastic gradient Riemannian Langevin sampler and achieves both faster speed and higher accuracy at every iteration than the current state-of-the-art algorithm based on stochastic variational inference. In addition we develop an approximation that can handle models that entertain a very large number of communities. The experimental results show that SG-MCMC strictly dominates competing algorithms in all cases.

View on arXiv
Comments on this paper