11
24

Black-Box Policy Search with Probabilistic Programs

Abstract

In this work, we explore how probabilistic programs can be used to represent policies in sequential decision problems. In this formulation, a probabilistic program is a black-box stochastic simulator for both the problem domain and the agent. We relate classic policy gradient techniques to recently introduced black-box variational methods which generalize to probabilistic program inference. We present case studies in the Canadian traveler problem, Rock Sample, and a benchmark for optimal diagnosis inspired by Guess Who. Each study illustrates how programs can efficiently represent policies using moderate numbers of parameters.

View on arXiv
Comments on this paper