59
10

On the Convergence of Stochastic Variational Inference in Bayesian Networks

Abstract

We highlight a pitfall when applying stochastic variational inference to general Bayesian networks. For global random variables approximated by an exponential family distribution, natural gradient steps, commonly starting from a unit length step size, are averaged to convergence. This useful insight into the scaling of initial step sizes is lost when the approximation factorizes across a general Bayesian network, and care must be taken to ensure practical convergence. We experimentally investigate how much of the baby (well-scaled steps) is thrown out with the bath water (exact gradients).

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.