Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.1901
Cited By
MCMC using Hamiltonian dynamics
9 June 2012
Radford M. Neal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MCMC using Hamiltonian dynamics"
50 / 1,031 papers shown
Title
Bayesian causal discovery from unknown general interventions
Alessandro Mascaro
F. Castelletti
8
1
0
01 Dec 2023
Accelerating Neural Field Training via Soft Mining
Shakiba Kheradmand
Daniel Rebain
Gopal Sharma
Hossam N. Isack
Abhishek Kar
Andrea Tagliasacchi
Kwang Moo Yi
35
4
0
29 Nov 2023
Maximum Entropy Model Correction in Reinforcement Learning
Amin Rakhsha
Mete Kemertas
Mohammad Ghavamzadeh
Amir-massoud Farahmand
15
1
0
29 Nov 2023
An Empirical Bayes Framework for Open-Domain Dialogue Generation
Jing Yang Lee
Kong Aik Lee
Woon-Seng Gan
BDL
6
0
0
18 Nov 2023
Fuse It or Lose It: Deep Fusion for Multimodal Simulation-Based Inference
Marvin Schmitt
Stefan T. Radev
Paul-Christian Burkner
44
5
0
17 Nov 2023
Direct Amortized Likelihood Ratio Estimation
Adam D. Cobb
Brian Matejek
Daniel Elenius
Anirban Roy
Susmit Jha
11
2
0
17 Nov 2023
Variational Temporal IRT: Fast, Accurate, and Explainable Inference of Dynamic Learner Proficiency
Yunsung Kim
Sreechan Sankaranarayanan
Chris Piech
Candace Thille
VLM
37
2
0
14 Nov 2023
Approximating Langevin Monte Carlo with ResNet-like Neural Network architectures
Charles Miranda
Janina Enrica Schutte
David Sommer
Martin Eigel
18
3
0
06 Nov 2023
Diffusion Models for Reinforcement Learning: A Survey
Zhengbang Zhu
Hanye Zhao
Haoran He
Yichao Zhong
Shenyu Zhang
Haoquan Guo
Tingting Chen
Weinan Zhang
27
59
0
02 Nov 2023
Rethinking Variational Inference for Probabilistic Programs with Stochastic Support
Tim Reichelt
C. Ong
Tom Rainforth
14
2
0
01 Nov 2023
An Embedded Diachronic Sense Change Model with a Case Study from Ancient Greek
Schyan Zafar
Geoff K. Nicholls
19
1
0
01 Nov 2023
Diffusion models for probabilistic programming
Simon Dirmeier
Fernando Pérez-Cruz
53
0
0
01 Nov 2023
Bayesian Multistate Bennett Acceptance Ratio Methods
Xinqiang Ding
15
3
0
31 Oct 2023
Estimating optimal PAC-Bayes bounds with Hamiltonian Monte Carlo
Szilvia Ujváry
Gergely Flamich
Vincent Fortuin
José Miguel Hernández Lobato
10
0
0
30 Oct 2023
Purify++: Improving Diffusion-Purification with Advanced Diffusion Models and Control of Randomness
Boya Zhang
Weijian Luo
Zhihua Zhang
21
10
0
28 Oct 2023
Coreset Markov Chain Monte Carlo
Naitong Chen
Trevor Campbell
11
4
0
25 Oct 2023
Particle-based Variational Inference with Generalized Wasserstein Gradient Flow
Ziheng Cheng
Shiyue Zhang
Longlin Yu
Cheng Zhang
BDL
26
6
0
25 Oct 2023
Bayesian imaging inverse problem with SA-Roundtrip prior via HMC-pCN sampler
Jiayu Qian
Yuanyuan Liu
Jingya Yang
Qingping Zhou
13
0
0
24 Oct 2023
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs with Stochastic Support
Tim Reichelt
C.-H. Luke Ong
Tom Rainforth
17
0
0
23 Oct 2023
Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability
Maciej Falkiewicz
Naoya Takeishi
Imahn Shekhzadeh
Antoine Wehenkel
Arnaud Delaunoy
Gilles Louppe
Alexandros Kalousis
19
6
0
20 Oct 2023
Towards Understanding Sycophancy in Language Models
Mrinank Sharma
Meg Tong
Tomasz Korbak
D. Duvenaud
Amanda Askell
...
Oliver Rausch
Nicholas Schiefer
Da Yan
Miranda Zhang
Ethan Perez
209
178
0
20 Oct 2023
Neural Likelihood Approximation for Integer Valued Time Series Data
Luke O'Loughlin
John Maclean
Andrew Black
AI4TS
13
0
0
19 Oct 2023
Sensitivity-Aware Amortized Bayesian Inference
Lasse Elsemüller
Hans Olischläger
Marvin Schmitt
Paul-Christian Burkner
Ullrich Kothe
Stefan T. Radev
15
7
0
17 Oct 2023
Correcting model misspecification in physics-informed neural networks (PINNs)
Zongren Zou
Xuhui Meng
George Karniadakis
PINN
24
41
0
16 Oct 2023
An Introduction to the Calibration of Computer Models
Richard D. Wilkinson
Christopher W. Lanyon
19
0
0
13 Oct 2023
PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification
Qianli Shen
Wai Hoh Tang
Zhun Deng
Apostolos F. Psaros
Kenji Kawaguchi
57
1
0
10 Oct 2023
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference
Marvin Schmitt
Desi R. Ivanova
Daniel Habermann
Baixu Chen
Jie Jiang
Stefan T. Radev
FedML
22
5
0
06 Oct 2023
Grokking as a First Order Phase Transition in Two Layer Networks
Noa Rubin
Inbar Seroussi
Z. Ringel
26
15
0
05 Oct 2023
Sampling via Gradient Flows in the Space of Probability Measures
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
22
13
0
05 Oct 2023
Multi-fidelity No-U-Turn Sampling
Kislaya Ravi
T. Neckel
H. Bungartz
12
1
0
04 Oct 2023
Probabilistic Reach-Avoid for Bayesian Neural Networks
Matthew Wicker
Luca Laurenti
A. Patané
Nicola Paoletti
Alessandro Abate
Marta Z. Kwiatkowska
16
2
0
03 Oct 2023
A physics and data co-driven surrogate modeling method for high-dimensional rare event simulation
Jianhua Xian
Ziqi Wang
AI4CE
20
9
0
30 Sep 2023
Diffusion Models as Stochastic Quantization in Lattice Field Theory
L. Wang
Gert Aarts
Kai Zhou
DiffM
27
14
0
29 Sep 2023
Bayesian Cramér-Rao Bound Estimation with Score-Based Models
Evan Scope Crafts
Xianyang Zhang
Ye Zhao
11
2
0
28 Sep 2023
Improvements on Scalable Stochastic Bayesian Inference Methods for Multivariate Hawkes Process
Alex Ziyu Jiang
Abel Rodríguez
19
1
0
26 Sep 2023
Self-Tuning Hamiltonian Monte Carlo for Accelerated Sampling
H. Christiansen
Federico Errica
Francesco Alesiani
35
6
0
24 Sep 2023
Multi-fidelity climate model parameterization for better generalization and extrapolation
Mohamed Aziz Bhouri
Liran Peng
Michael S. Pritchard
Pierre Gentine
AI4CE
24
4
0
19 Sep 2023
Affine Invariant Ensemble Transform Methods to Improve Predictive Uncertainty in Neural Networks
Diksha Bhandari
Jakiw Pidstrigach
Sebastian Reich
20
1
0
09 Sep 2023
Iterative Multi-granular Image Editing using Diffusion Models
K. J. Joseph
Prateksha Udhayanan
Tripti Shukla
Aishwarya Agarwal
Srikrishna Karanam
Koustava Goswami
Balaji Vasan Srinivasan
DiffM
22
16
0
01 Sep 2023
Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals
Hongwei Tan
Stanley Osher
Wuchen Li
19
7
0
28 Aug 2023
Renormalizing Diffusion Models
Jordan S. Cotler
Semon Rezchikov
DiffM
AI4CE
27
11
0
23 Aug 2023
Semi-Implicit Variational Inference via Score Matching
Longlin Yu
C. Zhang
11
10
0
19 Aug 2023
Perfect simulation from unbiased simulation
G. Leigh
Wen-Hsi Yang
Montana Wickens
Amanda R. Northrop Queensland Department of Agriculture
10
1
0
14 Aug 2023
Likelihood-ratio-based confidence intervals for neural networks
Laurens Sluijterman
Eric Cator
Tom Heskes
UQCV
22
0
0
04 Aug 2023
Quantification of Predictive Uncertainty via Inference-Time Sampling
Katarína Tóthová
Lubor Ladicky
D. Thul
Marc Pollefeys
E. Konukoglu
UQCV
14
0
0
03 Aug 2023
An Agent-Based Model Framework for Utility-Based Cryptoeconomies
Kiran Karra
Tom Mellan
Maria Silva
Juan P. Madrigal-Cianci
Axel Cubero Cortes
Zixuan Zhang
8
1
0
27 Jul 2023
Explicit Constraints on the Geometric Rate of Convergence of Random Walk Metropolis-Hastings
Riddhiman Bhattacharya
Galin L. Jones
15
2
0
21 Jul 2023
Field-Level Inference with Microcanonical Langevin Monte Carlo
Adrian E Bayer
U. Seljak
Chirag Modi
26
9
0
18 Jul 2023
Characterization of partial wetting by CMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs
Elham Kiyani
M. Kooshkbaghi
K. Shukla
R. Koneru
Zhen Li
L. Bravo
A. Ghoshal
George Karniadakis
M. Karttunen
AI4CE
27
4
0
18 Jul 2023
Gaussian processes for Bayesian inverse problems associated with linear partial differential equations
Tianming Bai
A. Teckentrup
K. Zygalakis
25
8
0
17 Jul 2023
Previous
1
2
3
4
5
...
19
20
21
Next