ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.1901
  4. Cited By
MCMC using Hamiltonian dynamics

MCMC using Hamiltonian dynamics

9 June 2012
Radford M. Neal
ArXivPDFHTML

Papers citing "MCMC using Hamiltonian dynamics"

50 / 1,032 papers shown
Title
Hug and Hop: a discrete-time, non-reversible Markov chain Monte-Carlo
  algorithm
Hug and Hop: a discrete-time, non-reversible Markov chain Monte-Carlo algorithm
Matthew Ludkin
Chris Sherlock
11
8
0
29 Jul 2019
Multi-Rank Sparse and Functional PCA: Manifold Optimization and
  Iterative Deflation Techniques
Multi-Rank Sparse and Functional PCA: Manifold Optimization and Iterative Deflation Techniques
Michael Weylandt
6
4
0
28 Jul 2019
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random
  Transport
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random Transport
L. Duan
OT
21
11
0
24 Jul 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
17
141
0
17 Jul 2019
The Use of Gaussian Processes in System Identification
The Use of Gaussian Processes in System Identification
Simo Särkkä
GP
AI4TS
6
8
0
13 Jul 2019
Probabilistic programming for birth-death models of evolution using an
  alive particle filter with delayed sampling
Probabilistic programming for birth-death models of evolution using an alive particle filter with delayed sampling
J. Kudlicka
Lawrence M. Murray
F. Ronquist
Thomas B. Schon
11
10
0
10 Jul 2019
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at
  Scale
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale
A. G. Baydin
Lei Shao
W. Bhimji
Lukas Heinrich
Lawrence Meadows
...
Philip H. S. Torr
Victor W. Lee
Kyle Cranmer
P. Prabhat
Frank D. Wood
20
55
0
08 Jul 2019
Deployable probabilistic programming
Deployable probabilistic programming
David Tolpin
TPM
17
7
0
20 Jun 2019
Monte Carlo simulation on the Stiefel manifold via polar expansion
Monte Carlo simulation on the Stiefel manifold via polar expansion
Michael Jauch
P. Hoff
David B. Dunson
17
30
0
18 Jun 2019
Analyses of Multi-collection Corpora via Compound Topic Modeling
Analyses of Multi-collection Corpora via Compound Topic Modeling
Clint P. George
Wei Xia
George Michailidis
11
0
0
17 Jun 2019
A Survey of Optimization Methods from a Machine Learning Perspective
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
22
548
0
17 Jun 2019
Automatic Relevance Determination Bayesian Neural Networks for Credit
  Card Default Modelling
Automatic Relevance Determination Bayesian Neural Networks for Credit Card Default Modelling
R. Mbuvha
I. Boulkaibet
T. Marwala
BDL
14
8
0
14 Jun 2019
Learning Deep Generative Models with Annealed Importance Sampling
Learning Deep Generative Models with Annealed Importance Sampling
Xinqiang Ding
David J. Freedman
VLM
BDL
GAN
26
10
0
12 Jun 2019
Learning Symmetries of Classical Integrable Systems
Learning Symmetries of Classical Integrable Systems
Roberto Bondesan
A. Lamacraft
6
39
0
11 Jun 2019
Sparse Variational Inference: Bayesian Coresets from Scratch
Sparse Variational Inference: Bayesian Coresets from Scratch
Trevor Campbell
Boyan Beronov
10
38
0
07 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
21
2,285
0
06 Jun 2019
Combining Generative and Discriminative Models for Hybrid Inference
Combining Generative and Discriminative Models for Hybrid Inference
Victor Garcia Satorras
Zeynep Akata
Max Welling
11
56
0
06 Jun 2019
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer
  Vision
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OOD
UQCV
BDL
19
295
0
04 Jun 2019
Universal Boosting Variational Inference
Universal Boosting Variational Inference
Trevor Campbell
Xinglong Li
11
30
0
04 Jun 2019
Langevin Monte Carlo without smoothness
Langevin Monte Carlo without smoothness
Niladri S. Chatterji
Jelena Diakonikolas
Michael I. Jordan
Peter L. Bartlett
BDL
8
43
0
30 May 2019
Analysis of high-dimensional Continuous Time Markov Chains using the
  Local Bouncy Particle Sampler
Analysis of high-dimensional Continuous Time Markov Chains using the Local Bouncy Particle Sampler
T. Zhao
Alexandre Bouchard-Coté
11
5
0
30 May 2019
Replica-exchange Nosé-Hoover dynamics for Bayesian learning on large
  datasets
Replica-exchange Nosé-Hoover dynamics for Bayesian learning on large datasets
Rui Luo
Qiang Zhang
Yaodong Yang
Jun Wang
BDL
22
3
0
29 May 2019
Scalable Spike Source Localization in Extracellular Recordings using
  Amortized Variational Inference
Scalable Spike Source Localization in Extracellular Recordings using Amortized Variational Inference
C. Hurwitz
Kai Xu
Akash Srivastava
A. Buccino
Matthias H Hennig
DRL
6
15
0
29 May 2019
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of
  multi-step gradients
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients
Yuansi Chen
Raaz Dwivedi
Martin J. Wainwright
Bin Yu
11
100
0
29 May 2019
Conditionally Gaussian Random Sequences for an Integrated Variance
  Estimator with Correlation between Noise and Returns
Conditionally Gaussian Random Sequences for an Integrated Variance Estimator with Correlation between Noise and Returns
S. Peluso
Antonietta Mira
P. Muliere
15
1
0
28 May 2019
Accelerating Langevin Sampling with Birth-death
Accelerating Langevin Sampling with Birth-death
Yulong Lu
Jianfeng Lu
J. Nolen
8
51
0
23 May 2019
A Condition Number for Hamiltonian Monte Carlo
A Condition Number for Hamiltonian Monte Carlo
I. Langmore
M. Dikovsky
S. Geraedts
Peter C. Norgaard
R. V. Behren
10
6
0
23 May 2019
Output-Constrained Bayesian Neural Networks
Output-Constrained Bayesian Neural Networks
Wanqian Yang
Lars Lorch
Moritz Graule
Srivatsan Srinivasan
Anirudh Suresh
Jiayu Yao
Melanie F. Pradier
Finale Doshi-Velez
UQCV
BDL
6
12
0
15 May 2019
Active embedding search via noisy paired comparisons
Active embedding search via noisy paired comparisons
Gregory H. Canal
A. Massimino
Mark A. Davenport
Christopher Rozell
26
23
0
10 May 2019
A Contrastive Divergence for Combining Variational Inference and MCMC
A Contrastive Divergence for Combining Variational Inference and MCMC
Francisco J. R. Ruiz
Michalis K. Titsias
BDL
11
60
0
10 May 2019
Differentiable Visual Computing
Differentiable Visual Computing
Tzu-Mao Li
19
15
0
27 Apr 2019
Assessing and Visualizing Simultaneous Simulation Error
Assessing and Visualizing Simultaneous Simulation Error
Nathan Robertson
James M. Flegal
Dootika Vats
Galin L. Jones
12
15
0
26 Apr 2019
Learning Feature-to-Feature Translator by Alternating Back-Propagation
  for Generative Zero-Shot Learning
Learning Feature-to-Feature Translator by Alternating Back-Propagation for Generative Zero-Shot Learning
Yizhe Zhu
Jianwen Xie
Bingchen Liu
Ahmed Elgammal
VLM
6
86
0
22 Apr 2019
Markov chain Monte Carlo importance samplers for Bayesian models with
  intractable likelihoods
Markov chain Monte Carlo importance samplers for Bayesian models with intractable likelihoods
Jordan Franks
14
0
0
11 Apr 2019
Energy-Based Continuous Inverse Optimal Control
Energy-Based Continuous Inverse Optimal Control
Yifei Xu
Jianwen Xie
Tianyang Zhao
Chris L. Baker
Yibiao Zhao
Ying Nian Wu
15
19
0
10 Apr 2019
Bayesian Neural Networks at Finite Temperature
Bayesian Neural Networks at Finite Temperature
R. Baldock
Nicola Marzari
13
2
0
08 Apr 2019
Bayesian Estimation of Mixed Multinomial Logit Models: Advances and
  Simulation-Based Evaluations
Bayesian Estimation of Mixed Multinomial Logit Models: Advances and Simulation-Based Evaluations
P. Bansal
Rico Krueger
M. Bierlaire
Ricardo A. Daziano
T. Rashidi
12
31
0
07 Apr 2019
dynesty: A Dynamic Nested Sampling Package for Estimating Bayesian
  Posteriors and Evidences
dynesty: A Dynamic Nested Sampling Package for Estimating Bayesian Posteriors and Evidences
J. Speagle
20
1,180
0
03 Apr 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
17
10
0
25 Mar 2019
Posterior-based proposals for speeding up Markov chain Monte Carlo
Posterior-based proposals for speeding up Markov chain Monte Carlo
C. Pooley
S. Bishop
A. Doeschl-Wilson
G. Marion
25
5
0
25 Mar 2019
Data Augmentation for Bayesian Deep Learning
Data Augmentation for Bayesian Deep Learning
YueXing Wang
Nicholas G. Polson
Vadim O. Sokolov
UQCV
BDL
17
3
0
22 Mar 2019
Multi-Task Time Series Analysis applied to Drug Response Modelling
Multi-Task Time Series Analysis applied to Drug Response Modelling
Alex Bird
Christopher K. I. Williams
Christopher Hawthorne
AI4TS
8
4
0
21 Mar 2019
Irreversible Langevin MCMC on Lie Groups
Irreversible Langevin MCMC on Lie Groups
Alexis Arnaudon
Alessandro Barp
So Takao
AI4CE
13
5
0
21 Mar 2019
Implicit Generation and Generalization in Energy-Based Models
Implicit Generation and Generalization in Energy-Based Models
Yilun Du
Igor Mordatch
BDL
DiffM
17
40
0
20 Mar 2019
TATi-Thermodynamic Analytics ToolkIt: TensorFlow-based software for
  posterior sampling in machine learning applications
TATi-Thermodynamic Analytics ToolkIt: TensorFlow-based software for posterior sampling in machine learning applications
Frederik Heber
Zofia Trstanova
B. Leimkuhler
6
0
0
20 Mar 2019
Preconditioned P-ULA for Joint Deconvolution-Segmentation of Ultrasound
  Images -- Extended Version
Preconditioned P-ULA for Joint Deconvolution-Segmentation of Ultrasound Images -- Extended Version
M. Corbineau
Denis Kouamé
Émilie Chouzenoux
J. Tourneret
J. Pesquet
14
15
0
19 Mar 2019
Fast Markov chain Monte Carlo for high dimensional Bayesian regression
  models with shrinkage priors
Fast Markov chain Monte Carlo for high dimensional Bayesian regression models with shrinkage priors
Rui Jin
Aixin Tan
19
8
0
16 Mar 2019
Generalized Elliptical Slice Sampling with Regional Pseudo-priors
Generalized Elliptical Slice Sampling with Regional Pseudo-priors
Song Li
Geoffrey Tso
12
1
0
13 Mar 2019
Financial Applications of Gaussian Processes and Bayesian Optimization
Financial Applications of Gaussian Processes and Bayesian Optimization
Joan Gonzalvez
Edmond Lezmi
T. Roncalli
Jiali Xu
20
54
0
12 Mar 2019
Hamiltonian Monte Carlo on Symmetric and Homogeneous Spaces via
  Symplectic Reduction
Hamiltonian Monte Carlo on Symmetric and Homogeneous Spaces via Symplectic Reduction
Alessandro Barp
A. Kennedy
Mark Girolami
11
9
0
07 Mar 2019
Previous
123...141516...192021
Next