Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.1901
Cited By
MCMC using Hamiltonian dynamics
9 June 2012
Radford M. Neal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MCMC using Hamiltonian dynamics"
50 / 1,031 papers shown
Title
Nonlinear input design as optimal control of a Hamiltonian system
Jack Umenberger
Thomas B. Schon
9
5
0
06 Mar 2019
Statistical Guarantees for the Robustness of Bayesian Neural Networks
L. Cardelli
M. Kwiatkowska
Luca Laurenti
Nicola Paoletti
A. Patané
Matthew Wicker
AAML
15
54
0
05 Mar 2019
Scalable optimization-based sampling on function space
Johnathan M. Bardsley
Tiangang Cui
Youssef Marzouk
Zheng Wang
25
17
0
03 Mar 2019
Variational Auto-Decoder: A Method for Neural Generative Modeling from Incomplete Data
Amir Zadeh
Y. Lim
Paul Pu Liang
Louis-Philippe Morency
DRL
14
16
0
03 Mar 2019
Predictive Uncertainty Quantification with Compound Density Networks
Agustinus Kristiadi
Sina Daubener
Asja Fischer
BDL
UQCV
25
16
0
04 Feb 2019
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Chang-Shu Liu
Jingwei Zhuo
Jun Zhu
11
22
0
01 Feb 2019
Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation
Samuel Wiqvist
Pierre-Alexandre Mattei
Umberto Picchini
J. Frellsen
BDL
20
32
0
29 Jan 2019
Hamiltonian Monte-Carlo for Orthogonal Matrices
V. Yanush
D. Kropotov
11
1
0
23 Jan 2019
Precision Annealing Monte Carlo Methods for Statistical Data Assimilation: Metropolis-Hastings Procedures
Adrian S. Wong
Kangbo Hao
Zheng Fang
H. Abarbanel
17
1
0
14 Jan 2019
Accelerated Flow for Probability Distributions
Amirhossein Taghvaei
P. Mehta
21
30
0
10 Jan 2019
Bayesian calibration and sensitivity analysis for a karst aquifer model using active subspaces
Mario Teixeira Parente
D. Bittner
S. Mattis
G. Chiogna
B. Wohlmuth
13
27
0
10 Jan 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
13
2
0
03 Jan 2019
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Chunyuan Li
Ke Bai
Jianqiao Li
Guoyin Wang
Changyou Chen
Lawrence Carin
6
10
0
03 Jan 2019
Divergence Triangle for Joint Training of Generator Model, Energy-based Model, and Inference Model
Tian Han
Erik Nijkamp
Xiaolin Fang
Mitch Hill
Song-Chun Zhu
Ying Nian Wu
22
67
0
28 Dec 2018
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
Jamie Fairbrother
Christopher Nemeth
M. Rischard
Johanni Brea
Thomas Pinder
GP
VLM
6
24
0
21 Dec 2018
Inference with Hamiltonian Sequential Monte Carlo Simulators
Remi Daviet
12
10
0
19 Dec 2018
Breaking Reversibility Accelerates Langevin Dynamics for Global Non-Convex Optimization
Xuefeng Gao
Mert Gurbuzbalaban
Lingjiong Zhu
11
30
0
19 Dec 2018
Bayesian deep neural networks for low-cost neurophysiological markers of Alzheimer's disease severity
W. Fruehwirt
Adam D. Cobb
M. Mairhofer
L. Weydemann
H. Garn
...
M. Waser
D. Grossegger
Pengfei Zhang
Georg Dorffner
Stephen J. Roberts
BDL
OOD
14
18
0
12 Dec 2018
Phenotype Inference with Semi-Supervised Mixed Membership Models
Victor Alfonso Rodriguez
A. Perotte
14
4
0
07 Dec 2018
Enhancing Perceptual Attributes with Bayesian Style Generation
Aliaksandr Siarohin
Gloria Zen
N. Sebe
Elisa Ricci
EGVM
GAN
16
4
0
03 Dec 2018
Tree-Structured Recurrent Switching Linear Dynamical Systems for Multi-Scale Modeling
Josue Nassar
Scott W. Linderman
M. Bugallo
Il-Su Park
AI4CE
6
73
0
29 Nov 2018
Stable Tensor Neural Networks for Rapid Deep Learning
Elizabeth Newman
L. Horesh
H. Avron
M. Kilmer
29
35
0
15 Nov 2018
A Review of automatic differentiation and its efficient implementation
C. Margossian
12
301
0
12 Nov 2018
Efficient Marginalization-based MCMC Methods for Hierarchical Bayesian Inverse Problems
A. Saibaba
Johnathan M. Bardsley
D. Brown
A. Alexanderian
6
12
0
02 Nov 2018
Probabilistic Programming with Densities in SlicStan: Efficient, Flexible and Deterministic
Maria I. Gorinova
Andrew D. Gordon
Charles Sutton
17
23
0
02 Nov 2018
Leveraging Gaussian Process and Voting-Empowered Many-Objective Evaluation for Fault Identification
Pei Cao
Q. Shuai
Jiong Tang
12
0
0
29 Oct 2018
An Efficient Implementation of Riemannian Manifold Hamiltonian Monte Carlo for Gaussian Process Models
Ulrich Paquet
Marco Fraccaro
16
4
0
28 Oct 2018
Bayesian cosmic density field inference from redshift space dark matter maps
E. G. P. Bos
F. Kitaura
R. Weygaert
14
14
0
11 Oct 2018
Faster Hamiltonian Monte Carlo by Learning Leapfrog Scale
Changye Wu
Julien Stoehr
Christian P. Robert
13
15
0
10 Oct 2018
PADDIT: Probabilistic Augmentation of Data using Diffeomorphic Image Transformation
Mauricio Orbes-Arteaga
Lauge Sørensen
M. Jorge Cardoso
Marc Modat
Sebastien Ourselin
Stefan Sommer
Mads Nielsen
Christian Igel
A. Pai
DiffM
MedIm
11
3
0
03 Oct 2018
Approximation and sampling of multivariate probability distributions in the tensor train decomposition
S. Dolgov
K. Anaya-Izquierdo
C. Fox
Robert Scheichl
20
72
0
02 Oct 2018
Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and Momentum-Based Acceleration
Xuefeng Gao
Mert Gurbuzbalaban
Lingjiong Zhu
17
60
0
12 Sep 2018
Probabilistic approach to limited-data computed tomography reconstruction
Z. Purisha
Carl Jidling
Niklas Wahlström
Simo Särkkä
Thomas B. Schon
20
19
0
11 Sep 2018
A Hybrid Scan Gibbs Sampler for Bayesian Models with Latent Variables
Grant Backlund
J. Hobert
Yeun Ji Jung
Kshitij Khare
11
2
0
27 Aug 2018
Adaptive Tuning Of Hamiltonian Monte Carlo Within Sequential Monte Carlo
Alexander K. Buchholz
Nicolas Chopin
Pierre E. Jacob
19
32
0
23 Aug 2018
Unbiased Implicit Variational Inference
Michalis K. Titsias
Francisco J. R. Ruiz
BDL
16
52
0
06 Aug 2018
Subsampling MCMC - An introduction for the survey statistician
M. Quiroz
M. Villani
Robert Kohn
Minh-Ngoc Tran
Khue-Dung Dang
6
23
0
23 Jul 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank D. Wood
13
31
0
20 Jul 2018
Approximate Collapsed Gibbs Clustering with Expectation Propagation
Christopher Aicher
E. Fox
20
0
0
19 Jul 2018
Adaptive Dimension Reduction to Accelerate Infinite-Dimensional Geometric Markov Chain Monte Carlo
Shiwei Lan
19
10
0
15 Jul 2018
Surrogate-Based Bayesian Inverse Modeling of the Hydrological System: An Adaptive Approach Considering Surrogate Approximation Error
Jiangjiang Zhang
Q. Zheng
Dingjiang Chen
Laosheng Wu
L. Zeng
17
36
0
10 Jul 2018
Discrete Sampling using Semigradient-based Product Mixtures
Alkis Gotovos
S. Hassani
Andreas Krause
Stefanie Jegelka
19
2
0
04 Jul 2018
Understanding and Accelerating Particle-Based Variational Inference
Chang-rui Liu
Jingwei Zhuo
Pengyu Cheng
Ruiyi Zhang
Jun Zhu
Lawrence Carin
9
14
0
04 Jul 2018
Bayesian Spatial Analysis of Hardwood Tree Counts in Forests via MCMC
R. Entezari
P. Brown
Jeffrey S. Rosenthal
13
4
0
03 Jul 2018
Efficient data augmentation for multivariate probit models with panel data: An application to general practitioner decision-making about contraceptives
Vincent Chin
David Gunawan
D. Fiebig
Robert Kohn
S. Sisson
11
4
0
19 Jun 2018
Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo
Marton Havasi
José Miguel Hernández-Lobato
J. J. Murillo-Fuentes
BDL
11
96
0
14 Jun 2018
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
16
44
0
12 Jun 2018
Adaptive MCMC via Combining Local Samplers
K. Shaloudegi
András Gyorgy
16
1
0
11 Jun 2018
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
55
114
0
08 Jun 2018
Dynamically rescaled Hamiltonian Monte Carlo for Bayesian Hierarchical Models
T. S. Kleppe
32
11
0
06 Jun 2018
Previous
1
2
3
...
15
16
17
...
19
20
21
Next