ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.11199
17
7

Deployable probabilistic programming

20 June 2019
David Tolpin
    TPM
ArXivPDFHTML
Abstract

We propose design guidelines for a probabilistic programming facility suitable for deployment as a part of a production software system. As a reference implementation, we introduce Infergo, a probabilistic programming facility for Go, a modern programming language of choice for server-side software development. We argue that a similar probabilistic programming facility can be added to most modern general-purpose programming languages. Probabilistic programming enables automatic tuning of program parameters and algorithmic decision making through probabilistic inference based on the data. To facilitate addition of probabilistic programming capabilities to other programming languages, we share implementation choices and techniques employed in development of Infergo. We illustrate applicability of Infergo to various use cases on case studies, and evaluate Infergo's performance on several benchmarks, comparing Infergo to dedicated inference-centric probabilistic programming frameworks.

View on arXiv
Comments on this paper