Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.03164
Cited By
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
8 January 2021
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials"
50 / 396 papers shown
Title
Accurate transition state generation with an object-aware equivariant elementary reaction diffusion model
Chenru Duan
Yuanqi Du
Haojun Jia
Heather J. Kulik
DiffM
32
46
0
12 Apr 2023
Machine learning for structure-property relationships: Scalability and limitations
Zhongzheng Tian
Sheng Zhang
Gia-Wei Chern
11
2
0
11 Apr 2023
High Accuracy Uncertainty-Aware Interatomic Force Modeling with Equivariant Bayesian Neural Networks
Tim Rensmeyer
Benjamin Craig
D. Kramer
Oliver Niggemann
BDL
41
3
0
05 Apr 2023
E(
3
3
3
) Equivariant Graph Neural Networks for Particle-Based Fluid Mechanics
Artur P. Toshev
Gianluca Galletti
Johannes Brandstetter
Stefan Adami
Nikolaus A. Adams
22
5
0
31 Mar 2023
On the Relationships between Graph Neural Networks for the Simulation of Physical Systems and Classical Numerical Methods
Artur P. Toshev
Ludger Paehler
A. Panizza
Nikolaus A. Adams
AI4CE
PINN
19
5
0
31 Mar 2023
Heat flux for semi-local machine-learning potentials
Marcel F. Langer
Florian Knoop
Christian Carbogno
Matthias Scheffler
M. Rupp
25
7
0
25 Mar 2023
GNN-Assisted Phase Space Integration with Application to Atomistics
Shashank Saxena
Jan-Hendrik Bastek
Miguel Spinola
Prateek Gupta
D. Kochmann
8
2
0
20 Mar 2023
Allegro-Legato: Scalable, Fast, and Robust Neural-Network Quantum Molecular Dynamics via Sharpness-Aware Minimization
Hikaru Ibayashi
Taufeq Mohammed Razakh
Liqiu Yang
T. Linker
M. Olguin
...
Ye Luo
R. Kalia
A. Nakano
K. Nomura
P. Vashishta
43
9
0
14 Mar 2023
MELON: NeRF with Unposed Images in SO(3)
A. Levy
Mark J. Matthews
Matan Sela
Gordon Wetzstein
Dmitry Lagun
48
1
0
14 Mar 2023
Wigner kernels: body-ordered equivariant machine learning without a basis
Filippo Bigi
Sergey Pozdnyakov
Michele Ceriotti
32
15
0
07 Mar 2023
DR-Label: Improving GNN Models for Catalysis Systems by Label Deconstruction and Reconstruction
Bo-Lan Wang
Chen Liang
Jiaze Wang
Furui Liu
Shaogang Hao
Dong Li
Jianye Hao
Guangyong Chen
Xiaolong Zou
Pheng-Ann Heng
44
3
0
06 Mar 2023
Denoise Pretraining on Nonequilibrium Molecules for Accurate and Transferable Neural Potentials
Yuyang Wang
Chang Xu
Zijie Li
A. Farimani
AAML
AI4CE
27
21
0
03 Mar 2023
Completeness of Atomic Structure Representations
M. J. Willatt
Sergey Pozdnyakov
Christoph Ortner
Michele Ceriotti
20
12
0
28 Feb 2023
CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling
B. Deng
Peichen Zhong
KyuJung Jun
Janosh Riebesell
K. Han
Christopher J. Bartel
Gerbrand Ceder
28
24
0
28 Feb 2023
Connectivity Optimized Nested Graph Networks for Crystal Structures
R. Ruff
Patrick Reiser
Jan Stuhmer
Pascal Friederich
GNN
28
11
0
27 Feb 2023
Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey from Precision to Interpretability
Zhiqiang Zhong
A. Barkova
Davide Mottin
24
8
0
16 Feb 2023
Geometric Clifford Algebra Networks
David Ruhe
Jayesh K. Gupta
Steven De Keninck
Max Welling
Johannes Brandstetter
AI4CE
26
33
0
13 Feb 2023
Data efficiency and extrapolation trends in neural network interatomic potentials
Joshua A Vita
Daniel Schwalbe-Koda
42
16
0
12 Feb 2023
Is Distance Matrix Enough for Geometric Deep Learning?
Zian Li
Xiyuan Wang
Yinan Huang
Muhan Zhang
37
17
0
11 Feb 2023
Geometry-Complete Diffusion for 3D Molecule Generation and Optimization
Alex Morehead
Jianlin Cheng
DiffM
14
23
0
08 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
37
79
0
07 Feb 2023
GPS++: Reviving the Art of Message Passing for Molecular Property Prediction
Dominic Masters
Josef Dean
Kerstin Klaser
Zhiyi Li
Sam Maddrell-Mander
...
D. Beker
Andrew Fitzgibbon
Shenyang Huang
Ladislav Rampášek
Dominique Beaini
38
8
0
06 Feb 2023
Towards fully covariant machine learning
Soledad Villar
D. Hogg
Weichi Yao
George A. Kevrekidis
Bernhard Schölkopf
AI4CE
38
10
0
31 Jan 2023
StriderNET: A Graph Reinforcement Learning Approach to Optimize Atomic Structures on Rough Energy Landscapes
Vaibhav Bihani
S. Manchanda
Srikanth Sastry
Sayan Ranu
N. M. A. Krishnan
GNN
OffRL
AI4CE
31
4
0
29 Jan 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
39
27
0
26 Jan 2023
On the Expressive Power of Geometric Graph Neural Networks
Chaitanya K. Joshi
Cristian Bodnar
Simon V. Mathis
Taco Cohen
Pietro Liò
55
83
0
23 Jan 2023
Spatial Attention Kinetic Networks with E(n)-Equivariance
Yuanqing Wang
J. Chodera
38
15
0
21 Jan 2023
Evaluating the Transferability of Machine-Learned Force Fields for Material Property Modeling
Shaswat Mohanty
S. Yoo
K. Kang
W. Cai
26
2
0
10 Jan 2023
Protein-Ligand Complex Generator & Drug Screening via Tiered Tensor Transform
J. Mailoa
Zhaofeng Ye
J. Qiu
Chang-Yu Hsieh
Shengyu Zhang
30
3
0
03 Jan 2023
Structure-based drug discovery with deep learning
Rıza Özçelik
D. V. Tilborg
José Jiménez-Luna
F. Grisoni
AI4CE
29
35
0
26 Dec 2022
Reconstructing Kernel-based Machine Learning Force Fields with Super-linear Convergence
Stefan Blücher
Klaus-Robert Muller
Stefan Chmiela
16
4
0
24 Dec 2022
Graph Learning and Its Advancements on Large Language Models: A Holistic Survey
Shaopeng Wei
Yu Zhao
Xingyan Chen
Qing Li
Fuzhen Zhuang
Ji Liu
Fuji Ren
Gang Kou
AI4CE
27
5
0
17 Dec 2022
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
35
21
0
15 Dec 2022
Lorentz group equivariant autoencoders
Zichun Hao
Raghav Kansal
Javier Mauricio Duarte
N. Chernyavskaya
BDL
DRL
AI4CE
26
23
0
14 Dec 2022
Implicit Convolutional Kernels for Steerable CNNs
Maksim Zhdanov
Nico Hoffmann
Gabriele Cesa
36
6
0
12 Dec 2022
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
25
59
0
11 Dec 2022
Score-based denoising for atomic structure identification
Tim Hsu
Babak Sadigh
N. Bertin
Cheol Woo Park
James Chapman
Vasily V. Bulatov
Fei Zhou
DiffM
40
6
0
05 Dec 2022
Capturing long-range interaction with reciprocal space neural network
Hongyu Yu
Liangliang Hong
Shiyou Chen
X. Gong
Hongjun Xiang
29
11
0
30 Nov 2022
Synthetic data enable experiments in atomistic machine learning
John L A Gardner
Z. Beaulieu
Volker L. Deringer
37
6
0
29 Nov 2022
Neural DAEs: Constrained neural networks
Tue Boesen
E. Haber
Uri M. Ascher
39
3
0
25 Nov 2022
Extreme Acceleration of Graph Neural Network-based Prediction Models for Quantum Chemistry
Hatem Helal
J. Firoz
Jenna A. Bilbrey
M. M. Krell
Tom Murray
Ang Li
S. Xantheas
Sutanay Choudhury
GNN
46
5
0
25 Nov 2022
A Self-Attention Ansatz for Ab-initio Quantum Chemistry
Ingrid von Glehn
J. Spencer
David Pfau
26
61
0
24 Nov 2022
Graph Contrastive Learning for Materials
Teddy Koker
Keegan Quigley
Will Spaeth
Nathan C. Frey
Lin Li
19
5
0
24 Nov 2022
An ensemble of VisNet, Transformer-M, and pretraining models for molecular property prediction in OGB Large-Scale Challenge @ NeurIPS 2022
Yusong Wang
Shaoning Li
Zun Wang
Xinheng He
Bin Shao
Tie-Yan Liu
Tong Wang
AI4CE
25
4
0
23 Nov 2022
Learning Regularized Positional Encoding for Molecular Prediction
Xiang Gao
Weihao Gao
Wen Xiao
Zhirui Wang
Chong Wang
Liang Xiang
AI4CE
27
1
0
23 Nov 2022
Supervised Pretraining for Molecular Force Fields and Properties Prediction
Xiang Gao
Weihao Gao
Wen Xiao
Zhirui Wang
Chong Wang
Liang Xiang
AI4CE
25
8
0
23 Nov 2022
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design
Alexandre Duval
Victor Schmidt
Santiago Miret
Yoshua Bengio
Alex Hernández-García
David Rolnick
33
7
0
22 Nov 2022
General time-reversal equivariant neural network potential for magnetic materials
Hongyu Yu
Boyu Liu
Yang Zhong
Liangliang Hong
Jun-zhong Ji
Changsong Xu
X. Gong
Hongjun Xiang
20
2
0
21 Nov 2022
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Albert J. W. Zhu
Simon L. Batzner
Albert Musaelian
Boris Kozinsky
22
45
0
17 Nov 2022
Equivariant Networks for Crystal Structures
Sekouba Kaba
Siamak Ravanbakhsh
AI4CE
48
23
0
15 Nov 2022
Previous
1
2
3
4
5
6
7
8
Next