ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.03164
  4. Cited By
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials

E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials

8 January 2021
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
ArXivPDFHTML

Papers citing "E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials"

50 / 396 papers shown
Title
MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials
  Modeling
MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials Modeling
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
Mikhail Galkin
Santiago Miret
35
15
0
12 Sep 2023
Diffusion-EDFs: Bi-equivariant Denoising Generative Modeling on SE(3)
  for Visual Robotic Manipulation
Diffusion-EDFs: Bi-equivariant Denoising Generative Modeling on SE(3) for Visual Robotic Manipulation
Hyunwoo Ryu
Jiwoo Kim
Hyun Seok Ahn
Junwoo Chang
Joohwan Seo
Taehan Kim
Yubin Kim
Chaewon Hwang
Jongeun Choi
R. Horowitz
DiffM
27
33
0
06 Sep 2023
PolyGET: Accelerating Polymer Simulations by Accurate and Generalizable
  Forcefield with Equivariant Transformer
PolyGET: Accelerating Polymer Simulations by Accurate and Generalizable Forcefield with Equivariant Transformer
Rui Feng
Huan Tran
Aubrey Toland
Binghong Chen
Qi Zhu
R. Ramprasad
Chao Zhang
11
1
0
01 Sep 2023
Matbench Discovery -- A framework to evaluate machine learning crystal
  stability predictions
Matbench Discovery -- A framework to evaluate machine learning crystal stability predictions
Janosh Riebesell
Rhys E. A. Goodall
Philipp Benner
Chiang Yuan
Bowen Deng
A. Lee
Anubhav Jain
Kristin A. Persson
OOD
36
35
0
28 Aug 2023
SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
  Inductive Biases
SEGNO: Generalizing Equivariant Graph Neural Networks with Physical Inductive Biases
Yang Liu
Jiashun Cheng
Haihong Zhao
Tingyang Xu
P. Zhao
Fugee Tsung
Jia Li
Yu Rong
AI4CE
40
18
0
25 Aug 2023
May the Force be with You: Unified Force-Centric Pre-Training for 3D
  Molecular Conformations
May the Force be with You: Unified Force-Centric Pre-Training for 3D Molecular Conformations
Rui Feng
Qi Zhu
Huan Tran
Binghong Chen
Aubrey Toland
R. Ramprasad
Chao Zhang
AI4CE
28
9
0
24 Aug 2023
Beyond MD17: the reactive xxMD dataset
Beyond MD17: the reactive xxMD dataset
Zihan Pengmei
Junyu Liu
Yinan Shu
23
6
0
22 Aug 2023
SE(3) Equivariant Augmented Coupling Flows
SE(3) Equivariant Augmented Coupling Flows
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Emile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
38
22
0
20 Aug 2023
Accurate machine learning force fields via experimental and simulation
  data fusion
Accurate machine learning force fields via experimental and simulation data fusion
Sebastien Röcken
Julija Zavadlav
AI4CE
29
12
0
17 Aug 2023
Does AI for science need another ImageNet Or totally different
  benchmarks? A case study of machine learning force fields
Does AI for science need another ImageNet Or totally different benchmarks? A case study of machine learning force fields
Yatao Li
Wanling Gao
Lei Wang
Lixin Sun
Zun Wang
Jianfeng Zhan
18
1
0
11 Aug 2023
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural
  Wavefunctions
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural Wavefunctions
Michael Scherbela
Leon Gerard
Philipp Grohs
35
5
0
15 Jul 2023
Discovering Symbolic Laws Directly from Trajectories with Hamiltonian
  Graph Neural Networks
Discovering Symbolic Laws Directly from Trajectories with Hamiltonian Graph Neural Networks
S. Bishnoi
Ravinder Bhattoo
J. Jayadeva
Sayan Ranu
N. M. A. Krishnan
PINN
AI4CE
34
1
0
11 Jul 2023
Accelerating Molecular Graph Neural Networks via Knowledge Distillation
Accelerating Molecular Graph Neural Networks via Knowledge Distillation
Filip Ekstrom Kelvinius
D. Georgiev
Artur P. Toshev
Johannes Gasteiger
29
7
0
26 Jun 2023
Accurate melting point prediction through autonomous physics-informed
  learning
Accurate melting point prediction through autonomous physics-informed learning
O. Klimanova
Timofei Miryashkin
Alexander Shapeev
4
3
0
23 Jun 2023
EquiformerV2: Improved Equivariant Transformer for Scaling to
  Higher-Degree Representations
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Yidong Liao
Brandon M. Wood
Abhishek Das
Tess E. Smidt
26
131
0
21 Jun 2023
Uncertainty Estimation for Molecules: Desiderata and Methods
Uncertainty Estimation for Molecules: Desiderata and Methods
Tom Wollschlager
Nicholas Gao
Bertrand Charpentier
Mohamed Amine Ketata
Stephan Günnemann
23
9
0
20 Jun 2023
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Haiyang Yu
Meng Liu
Youzhi Luo
A. Strasser
X. Qian
Xiaoning Qian
Shuiwang Ji
18
20
0
15 Jun 2023
On the Interplay of Subset Selection and Informed Graph Neural Networks
On the Interplay of Subset Selection and Informed Graph Neural Networks
Niklas Breustedt
Paolo Climaco
Jochen Garcke
J. Hamaekers
Gitta Kutyniok
D. Lorenz
Rick Oerder
Chirag Varun Shukla
27
0
0
15 Jun 2023
Symmetry-Informed Geometric Representation for Molecules, Proteins, and
  Crystalline Materials
Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials
Shengchao Liu
Weitao Du
Yanjing Li
Zhuoxinran Li
Zhiling Zheng
...
Anima Anandkumar
C. Borgs
J. Chayes
Hongyu Guo
Jian Tang
AI4CE
33
20
0
15 Jun 2023
M$^2$Hub: Unlocking the Potential of Machine Learning for Materials
  Discovery
M2^22Hub: Unlocking the Potential of Machine Learning for Materials Discovery
Yuanqi Du
Yingheng Wang
Yin-Hua Huang
Jianan Canal Li
Yanqiao Zhu
T. Xie
Chenru Duan
J. Gregoire
Carla P. Gomes
34
6
0
14 Jun 2023
Efficient Approximations of Complete Interatomic Potentials for Crystal
  Property Prediction
Efficient Approximations of Complete Interatomic Potentials for Crystal Property Prediction
Yu-Ching Lin
Keqiang Yan
Youzhi Luo
Yi Liu
Xiaoning Qian
Shuiwang Ji
66
33
0
12 Jun 2023
TensorNet: Cartesian Tensor Representations for Efficient Learning of
  Molecular Potentials
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials
Guillem Simeon
Gianni De Fabritiis
29
45
0
10 Jun 2023
14 Examples of How LLMs Can Transform Materials Science and Chemistry: A
  Reflection on a Large Language Model Hackathon
14 Examples of How LLMs Can Transform Materials Science and Chemistry: A Reflection on a Large Language Model Hackathon
K. Jablonka
Qianxiang Ai
Alexander H Al-Feghali
S. Badhwar
Joshua D. Bocarsly Andres M Bran
...
Aristana Scourtas
K. J. Schmidt
Ian Foster
Andrew D. White
Ben Blaiszik
40
101
0
09 Jun 2023
Representing and Learning Functions Invariant Under Crystallographic
  Groups
Representing and Learning Functions Invariant Under Crystallographic Groups
Ryan P. Adams
Peter Orbanz
26
4
0
08 Jun 2023
Normalization-Equivariant Neural Networks with Application to Image
  Denoising
Normalization-Equivariant Neural Networks with Application to Image Denoising
Sébastien Herbreteau
E. Moebel
Charles Kervrann
20
9
0
08 Jun 2023
Efficient and Equivariant Graph Networks for Predicting Quantum
  Hamiltonian
Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian
Haiyang Yu
Zhao Xu
X. Qian
Xiaoning Qian
Shuiwang Ji
39
24
0
08 Jun 2023
How does over-squashing affect the power of GNNs?
How does over-squashing affect the power of GNNs?
Francesco Di Giovanni
T. Konstantin Rusch
Michael M. Bronstein
Andreea Deac
Marc Lackenby
Siddhartha Mishra
Petar Velivcković
30
34
0
06 Jun 2023
Machine Learning Force Fields with Data Cost Aware Training
Machine Learning Force Fields with Data Cost Aware Training
Alexander Bukharin
Tianyi Liu
Sheng Wang
Simiao Zuo
Weihao Gao
Wen Yan
Tuo Zhao
AI4CE
29
0
0
05 Jun 2023
Transfer learning for atomistic simulations using GNNs and kernel mean
  embeddings
Transfer learning for atomistic simulations using GNNs and kernel mean embeddings
Johannes Falk
L. Bonati
P. Novelli
Michele Parinello
Massimiliano Pontil
30
4
0
02 Jun 2023
Generalist Equivariant Transformer Towards 3D Molecular Interaction
  Learning
Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning
Xiangzhe Kong
Wen-bing Huang
Yang Liu
22
13
0
02 Jun 2023
Catalysis distillation neural network for the few shot open catalyst
  challenge
Catalysis distillation neural network for the few shot open catalyst challenge
B. Deng
11
0
0
31 May 2023
Smooth, exact rotational symmetrization for deep learning on point
  clouds
Smooth, exact rotational symmetrization for deep learning on point clouds
Sergey Pozdnyakov
Michele Ceriotti
3DPC
37
25
0
30 May 2023
SO(2)-Equivariant Downwash Models for Close Proximity Flight
SO(2)-Equivariant Downwash Models for Close Proximity Flight
Henry Smith
Ajay Shankar
Jennifer Gielis
J. Blumenkamp
A. Prorok
29
7
0
30 May 2023
Geometric Algebra Transformer
Geometric Algebra Transformer
Johann Brehmer
P. D. Haan
S. Behrends
Taco S. Cohen
39
26
0
28 May 2023
Learning Lagrangian Fluid Mechanics with E($3$)-Equivariant Graph Neural
  Networks
Learning Lagrangian Fluid Mechanics with E(333)-Equivariant Graph Neural Networks
Artur P. Toshev
Gianluca Galletti
Johannes Brandstetter
Stefan Adami
Nikolaus A. Adams
AI4CE
27
5
0
24 May 2023
Evaluation of the MACE Force Field Architecture: from Medicinal
  Chemistry to Materials Science
Evaluation of the MACE Force Field Architecture: from Medicinal Chemistry to Materials Science
D. P. Kovács
Ilyes Batatia
E. Arany
Gábor Csányi
AI4CE
26
82
0
23 May 2023
PANNA 2.0: Efficient neural network interatomic potentials and new
  architectures
PANNA 2.0: Efficient neural network interatomic potentials and new architectures
Franco Pellegrini
Ruggero Lot
Yusuf Shaidu
E. Küçükbenli
17
9
0
19 May 2023
Clifford Group Equivariant Neural Networks
Clifford Group Equivariant Neural Networks
David Ruhe
Johannes Brandstetter
Patrick Forré
29
35
0
18 May 2023
Policy Gradient Methods in the Presence of Symmetries and State
  Abstractions
Policy Gradient Methods in the Presence of Symmetries and State Abstractions
Prakash Panangaden
S. Rezaei-Shoshtari
Rosie Zhao
D. Meger
Doina Precup
25
2
0
09 May 2023
Equivariant Neural Networks for Spin Dynamics Simulations of Itinerant
  Magnets
Equivariant Neural Networks for Spin Dynamics Simulations of Itinerant Magnets
Y. Miyazaki
6
4
0
05 May 2023
Importance of equivariant and invariant symmetries for fluid flow
  modeling
Importance of equivariant and invariant symmetries for fluid flow modeling
Varun Shankar
Shivam Barwey
Zico Kolter
R. Maulik
V. Viswanathan
AI4CE
24
4
0
03 May 2023
An Exploration of Conditioning Methods in Graph Neural Networks
An Exploration of Conditioning Methods in Graph Neural Networks
Yeskendir Koishekenov
Erik J. Bekkers
AI4CE
40
3
0
03 May 2023
Single-model uncertainty quantification in neural network potentials
  does not consistently outperform model ensembles
Single-model uncertainty quantification in neural network potentials does not consistently outperform model ensembles
Aik Rui Tan
S. Urata
Samuel Goldman
Johannes C. B. Dietschreit
Rafael Gómez-Bombarelli
BDL
38
42
0
02 May 2023
Stress and heat flux via automatic differentiation
Stress and heat flux via automatic differentiation
Marcel F. Langer
J. Frank
Florian Knoop
30
8
0
02 May 2023
Geometric Latent Diffusion Models for 3D Molecule Generation
Geometric Latent Diffusion Models for 3D Molecule Generation
Minkai Xu
Alexander Powers
R. Dror
Stefano Ermon
J. Leskovec
DiffM
AI4CE
58
135
0
02 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
34
55
0
28 Apr 2023
Accurate Surface and Finite Temperature Bulk Properties of Lithium Metal
  at Large Scales using Machine Learning Interaction Potentials
Accurate Surface and Finite Temperature Bulk Properties of Lithium Metal at Large Scales using Machine Learning Interaction Potentials
Mgcini Keith Phuthi
A. Yao
Simon L. Batzner
Albert Musaelian
Boris Kozinsky
E. D. Cubuk
V. Viswanathan
14
11
0
24 Apr 2023
Scaling the leading accuracy of deep equivariant models to biomolecular
  simulations of realistic size
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
Albert Musaelian
A. Johansson
Simon L. Batzner
Boris Kozinsky
32
48
0
20 Apr 2023
Designing Nonlinear Photonic Crystals for High-Dimensional Quantum State
  Engineering
Designing Nonlinear Photonic Crystals for High-Dimensional Quantum State Engineering
Eyal Rozenberg
Aviv Karnieli
O. Yesharim
Joshua Foley-Comer
Sivan Trajtenberg‐Mills
...
Shashi Prabhakar
R. Singh
Daniel Freedman
A. Bronstein
A. Arie
18
1
0
13 Apr 2023
Evaluating the Robustness of Interpretability Methods through
  Explanation Invariance and Equivariance
Evaluating the Robustness of Interpretability Methods through Explanation Invariance and Equivariance
Jonathan Crabbé
M. Schaar
AAML
24
6
0
13 Apr 2023
Previous
12345678
Next