Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.03164
Cited By
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
8 January 2021
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials"
50 / 396 papers shown
Title
Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks
D. M. Nguyen
Nina Lukashina
Tai Nguyen
An T. Le
TrungTin Nguyen
Nhat Ho
Jan Peters
Daniel Sonntag
Viktor Zaverkin
Mathias Niepert
36
5
0
03 Feb 2024
LTAU-FF: Loss Trajectory Analysis for Uncertainty in Atomistic Force Fields
Joshua A. Vita
Amit Samanta
Fei Zhou
Vincenzo Lordi
25
2
0
01 Feb 2024
Energy-conserving equivariant GNN for elasticity of lattice architected metamaterials
I. Grega
Ilyes Batatia
Gábor Csányi
Sri Karlapati
Vikram S. Deshpande
22
3
0
30 Jan 2024
ZnTrack -- Data as Code
Fabian Zills
M. Schäfer
S. Tovey
Johannes Kästner
Christian Holm
32
1
0
19 Jan 2024
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Shengjie Luo
Tianlang Chen
Aditi S. Krishnapriyan
34
19
0
18 Jan 2024
Diffusion-Driven Generative Framework for Molecular Conformation Prediction
Bobin Yang
Jie Deng
Zhenghan Chen
Ruoxue Wu
DiffM
31
0
0
22 Dec 2023
Molecular Hypergraph Neural Networks
Junwu Chen
Philippe Schwaller
GNN
47
10
0
20 Dec 2023
Accelerating the prediction of inorganic surfaces with machine learning interatomic potentials
Kyle Noordhoek
Christopher J. Bartel
AI4CE
27
6
0
18 Dec 2023
3DReact: Geometric deep learning for chemical reactions
Puck van Gerwen
K. Briling
Charlotte Bunne
Vignesh Ram Somnath
Rubén Laplaza
Andreas Krause
C. Corminboeuf
3DV
39
6
0
13 Dec 2023
Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials
Teddy Koker
Keegan Quigley
Eric Taw
Kevin Tibbetts
Lin Li
20
12
0
08 Dec 2023
Predicting and Interpreting Energy Barriers of Metallic Glasses with Graph Neural Networks
Haoyu Li
Shichang Zhang
Longwen Tang
Mathieu Bauchy
Yizhou Sun
AI4CE
48
1
0
08 Dec 2023
Learning Polynomial Problems with
S
L
(
2
,
R
)
SL(2,\mathbb{R})
S
L
(
2
,
R
)
Equivariance
Hannah Lawrence
Mitchell Tong Harris
30
1
0
04 Dec 2023
Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials
Viktor Zaverkin
David Holzmüller
Henrik Christiansen
Federico Errica
Francesco Alesiani
Makoto Takamoto
Mathias Niepert
Johannes Kastner
AI4CE
32
13
0
03 Dec 2023
SAIBench: A Structural Interpretation of AI for Science Through Benchmarks
Yatao Li
Jianfeng Zhan
13
0
0
29 Nov 2023
Swallowing the Bitter Pill: Simplified Scalable Conformer Generation
Yuyang Wang
Ahmed A. A. Elhag
Navdeep Jaitly
J. Susskind
Miguel Angel Bautista
DiffM
27
20
0
27 Nov 2023
Symphony: Symmetry-Equivariant Point-Centered Spherical Harmonics for Molecule Generation
Ameya Daigavane
Song Kim
Mario Geiger
Tess E. Smidt
28
8
0
27 Nov 2023
Carbohydrate NMR chemical shift predictions using E(3) equivariant graph neural networks
Maria Bånkestad
Keven M. Dorst
Göran Widmalm
Jerk Rönnols
40
2
0
21 Nov 2023
Machine-Learned Atomic Cluster Expansion Potentials for Fast and Quantum-Accurate Thermal Simulations of Wurtzite AlN
Guang Yang
Yuan Liu
Lei Yang
Bingyang Cao
AI4CE
36
6
0
20 Nov 2023
Multiscale Hodge Scattering Networks for Data Analysis
Naoki Saito
Stefan C. Schonsheck
Eugene Shvarts
40
1
0
17 Nov 2023
H-Packer: Holographic Rotationally Equivariant Convolutional Neural Network for Protein Side-Chain Packing
Gian Marco Visani
William Galvin
Michael N. Pun
Armita Nourmohammad
27
6
0
15 Nov 2023
Equivariance Is Not All You Need: Characterizing the Utility of Equivariant Graph Neural Networks for Particle Physics Tasks
S. Thais
D. Murnane
AI4CE
31
4
0
06 Nov 2023
Gradual Optimization Learning for Conformational Energy Minimization
Artem Tsypin
L. Ugadiarov
Kuzma Khrabrov
Alexander Telepov
Egor Rumiantsev
Alexey Skrynnik
Aleksandr I. Panov
Dmitry Vetrov
E. Tutubalina
Artur Kadurin
24
1
0
05 Nov 2023
Investigating the Behavior of Diffusion Models for Accelerating Electronic Structure Calculations
D. Rothchild
Andrew S. Rosen
Eric Taw
Connie Robinson
Joseph E. Gonzalez
Aditi S. Krishnapriyan
DiffM
29
2
0
02 Nov 2023
The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture
Anuroop Sriram
Sihoon Choi
Xiaohan Yu
Logan M. Brabson
Abhishek Das
Zachary W. Ulissi
Matthew Uyttendaele
A. Medford
D. Sholl
AI4CE
31
35
0
01 Nov 2023
The Role of Reference Points in Machine-Learned Atomistic Simulation Models
Xiangyun Lei
Weike Ye
Joseph Montoya
Tim Mueller
Linda Hung
Jens Hummelshoej
16
0
0
28 Oct 2023
Navigating protein landscapes with a machine-learned transferable coarse-grained model
N. Charron
Felix Musil
Andrea Guljas
Yaoyi Chen
Klara Bonneau
...
B. Husic
Ankit Patel
Gianni De Fabritiis
Frank Noé
C. Clementi
AI4CE
16
13
0
27 Oct 2023
Learning Interatomic Potentials at Multiple Scales
Xiang Fu
Albert Musaelian
Anders Johansson
Tommi Jaakkola
Boris Kozinsky
29
2
0
20 Oct 2023
Equivariant Transformer is all you need
Akio Tomiya
Yuki Nagai
AI4CE
14
6
0
20 Oct 2023
Almost Equivariance via Lie Algebra Convolutions
Daniel McNeela
29
6
0
19 Oct 2023
Scalable Diffusion for Materials Generation
Mengjiao Yang
KwangHwan Cho
Amil Merchant
Pieter Abbeel
Dale Schuurmans
Igor Mordatch
E. D. Cubuk
29
39
0
18 Oct 2023
MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design
Xiang Fu
Tian Xie
Andrew S. Rosen
Tommi Jaakkola
Jake A. Smith
DiffM
42
9
0
16 Oct 2023
A Geometric Insight into Equivariant Message Passing Neural Networks on Riemannian Manifolds
Ilyes Batatia
26
0
0
16 Oct 2023
Equivariant Matrix Function Neural Networks
Ilyes Batatia
Lars L. Schaaf
Huajie Chen
Gábor Csányi
Christoph Ortner
Felix A. Faber
32
5
0
16 Oct 2023
On Accelerating Diffusion-based Molecular Conformation Generation in SE(3)-invariant Space
Zihan Zhou
Ruiying Liu
Tianshu Yu
DiffM
30
0
0
07 Oct 2023
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras
Tzu-Yuan Lin
Minghan Zhu
Maani Ghaffari
48
2
0
06 Oct 2023
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
Peter K. Eastman
Raimondas Galvelis
Raúl P. Peláez
C. Abreu
Stephen E. Farr
...
Yuanqing Wang
Ivy Zhang
J. Chodera
Gianni De Fabritiis
T. Markland
AI4CE
VLM
38
37
0
04 Oct 2023
Fast, Expressive SE
(
n
)
(n)
(
n
)
Equivariant Networks through Weight-Sharing in Position-Orientation Space
Erik J. Bekkers
Sharvaree P. Vadgama
Rob D. Hesselink
P. A. V. D. Linden
David W. Romero
21
24
0
04 Oct 2023
Spline-based neural network interatomic potentials: blending classical and machine learning models
Joshua A Vita
D. Trinkle
14
2
0
04 Oct 2023
EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields for Atomistic Simulations
Vaibhav Bihani
Utkarsh Pratiush
Sajid Mannan
Tao Du
Zhimin Chen
Santiago Miret
Matthieu Micoulaut
M. Smedskjaer
Sayan Ranu
N. M. A. Krishnan
24
19
0
03 Oct 2023
Approximately Equivariant Quantum Neural Network for
p
4
m
p4m
p
4
m
Group Symmetries in Images
Su Yeon Chang
Michele Grossi
B. L. Saux
S. Vallecorsa
51
13
0
03 Oct 2023
Backdiff: a diffusion model for generalized transferable protein backmapping
Yikai Liu
Ming Chen
Guang Lin
DiffM
27
2
0
03 Oct 2023
Algebras of actions in an agent's representations of the world
Alexander Dean
Eduardo Alonso
Esther Mondragón
33
0
0
02 Oct 2023
Predicting emergence of crystals from amorphous matter with deep learning
Muratahan Aykol
Amil Merchant
Simon L. Batzner
Jennifer N. Wei
E. D. Cubuk
AI4CE
15
2
0
02 Oct 2023
Navigating the Design Space of Equivariant Diffusion-Based Generative Models for De Novo 3D Molecule Generation
Tuan Le
Julian Cremer
Frank Noé
Djork-Arné Clevert
Kristof T. Schütt
DiffM
29
25
0
29 Sep 2023
Overcoming the Barrier of Orbital-Free Density Functional Theory for Molecular Systems Using Deep Learning
He Zhang
Siyuan Liu
Jiacheng You
Chang-Shu Liu
Shuxin Zheng
Ziheng Lu
Tong Wang
Nanning Zheng
Bin Shao
14
18
0
28 Sep 2023
LagrangeBench: A Lagrangian Fluid Mechanics Benchmarking Suite
Stefania Costantini
Gianluca Galletti
Fabian Fritz
Stefan Adami
Nikolaus A. Adams
40
13
0
28 Sep 2023
Learning dislocation dynamics mobility laws from large-scale MD simulations
N. Bertin
Vasily V. Bulatov
Fei Zhou
AI4CE
22
8
0
25 Sep 2023
From Peptides to Nanostructures: A Euclidean Transformer for Fast and Stable Machine Learned Force Fields
J. Frank
Oliver T. Unke
Klaus-Robert Muller
Stefan Chmiela
26
3
0
21 Sep 2023
Band-gap regression with architecture-optimized message-passing neural networks
Tim Bechtel
Daniel T. Speckhard
Jonathan Godwin
Claudia Ambrosch-Draxl
24
0
0
12 Sep 2023
Molecular Conformation Generation via Shifting Scores
Zihan Zhou
Ruiying Liu
Chaolong Ying
Ruimao Zhang
Tianshu Yu
DiffM
29
2
0
12 Sep 2023
Previous
1
2
3
4
5
6
7
8
Next