ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.03164
  4. Cited By
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials

E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials

8 January 2021
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
ArXivPDFHTML

Papers citing "E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials"

46 / 396 papers shown
Title
The Design Space of E(3)-Equivariant Atom-Centered Interatomic
  Potentials
The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials
Ilyes Batatia
Simon L. Batzner
D. P. Kovács
Albert Musaelian
G. Simm
R. Drautz
Christoph Ortner
Boris Kozinsky
Gábor Csányi
32
133
0
13 May 2022
Low Dimensional Invariant Embeddings for Universal Geometric Learning
Low Dimensional Invariant Embeddings for Universal Geometric Learning
Nadav Dym
S. Gortler
29
39
0
05 May 2022
Simulate Time-integrated Coarse-grained Molecular Dynamics with
  Multi-Scale Graph Networks
Simulate Time-integrated Coarse-grained Molecular Dynamics with Multi-Scale Graph Networks
Xiang Fu
T. Xie
Nathan J. Rebello
B. Olsen
Tommi Jaakkola
AI4CE
30
13
0
21 Apr 2022
Learning Local Equivariant Representations for Large-Scale Atomistic
  Dynamics
Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics
Albert Musaelian
Simon L. Batzner
A. Johansson
Lixin Sun
Cameron J. Owen
M. Kornbluth
Boris Kozinsky
24
424
0
11 Apr 2022
GemNet-OC: Developing Graph Neural Networks for Large and Diverse
  Molecular Simulation Datasets
GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets
Johannes Gasteiger
Muhammed Shuaibi
Anuroop Sriram
Stephan Günnemann
Zachary W. Ulissi
C. L. Zitnick
Abhishek Das
AI4TS
MLAU
36
66
0
06 Apr 2022
Dimensionless machine learning: Imposing exact units equivariance
Dimensionless machine learning: Imposing exact units equivariance
Soledad Villar
Weichi Yao
D. Hogg
Ben Blum-Smith
Bianca Dumitrascu
16
26
0
02 Apr 2022
Automatic Identification of Chemical Moieties
Automatic Identification of Chemical Moieties
Jonas Lederer
M. Gastegger
Kristof T. Schütt
Michael C. Kampffmeyer
Klaus-Robert Muller
Oliver T. Unke
21
5
0
30 Mar 2022
Equivariant Point Cloud Analysis via Learning Orientations for Message
  Passing
Equivariant Point Cloud Analysis via Learning Orientations for Message Passing
Shitong Luo
Jiahan Li
Jiaqi Guan
Yufeng Su
Chaoran Cheng
Jian-wei Peng
Jianzhu Ma
3DPC
26
34
0
28 Mar 2022
Symmetry-Based Representations for Artificial and Biological General
  Intelligence
Symmetry-Based Representations for Artificial and Biological General Intelligence
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
31
44
0
17 Mar 2022
Symmetry Group Equivariant Architectures for Physics
Symmetry Group Equivariant Architectures for Physics
A. Bogatskiy
S. Ganguly
Thomas Kipf
Risi Kondor
David W. Miller
...
Jan T. Offermann
M. Pettee
P. Shanahan
C. Shimmin
S. Thais
AI4CE
27
27
0
11 Mar 2022
GeoDiff: a Geometric Diffusion Model for Molecular Conformation
  Generation
GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation
Minkai Xu
Lantao Yu
Yang Song
Chence Shi
Stefano Ermon
Jian Tang
BDL
DiffM
50
496
0
06 Mar 2022
Spin-Dependent Graph Neural Network Potential for Magnetic Materials
Spin-Dependent Graph Neural Network Potential for Magnetic Materials
Hongyu Yu
Yang Zhong
Liangliang Hong
Changsong Xu
W. Ren
X. Gong
Hongjun Xiang
32
14
0
06 Mar 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace
  Approximations
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
39
44
0
22 Feb 2022
Equivariant Graph Attention Networks for Molecular Property Prediction
Equivariant Graph Attention Networks for Molecular Property Prediction
Tuan Le
Frank Noé
Djork-Arné Clevert
16
21
0
20 Feb 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction
Hannes Stärk
O. Ganea
L. Pattanaik
Regina Barzilay
Tommi Jaakkola
22
262
0
07 Feb 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
  Potentials
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni De Fabritiis
AI4CE
34
186
0
05 Feb 2022
Rigidity Preserving Image Transformations and Equivariance in
  Perspective
Rigidity Preserving Image Transformations and Equivariance in Perspective
Lucas Brynte
Georg Bökman
Axel Flinth
Fredrik Kahl
40
3
0
31 Jan 2022
Compositionality as Lexical Symmetry
Compositionality as Lexical Symmetry
Ekin Akyürek
Jacob Andreas
CoGe
52
8
0
30 Jan 2022
Generative Coarse-Graining of Molecular Conformations
Generative Coarse-Graining of Molecular Conformations
Wujie Wang
Minkai Xu
Chen Cai
Benjamin Kurt Miller
Tess E. Smidt
Yusu Wang
Jian Tang
Rafael Gómez-Bombarelli
27
34
0
28 Jan 2022
NNP/MM: Accelerating molecular dynamics simulations with machine
  learning potentials and molecular mechanic
NNP/MM: Accelerating molecular dynamics simulations with machine learning potentials and molecular mechanic
Raimondas Galvelis
Alejandro Varela-Rial
Stefan Doerr
R. Fino
Peter K. Eastman
T. Markland
J. Chodera
Gianni De Fabritiis
11
38
0
20 Jan 2022
Equivariant graph neural networks for fast electron density estimation
  of molecules, liquids, and solids
Equivariant graph neural networks for fast electron density estimation of molecules, liquids, and solids
Peter Bjørn Jørgensen
Arghya Bhowmik
16
36
0
01 Dec 2021
SE(3) Equivariant Graph Neural Networks with Complete Local Frames
SE(3) Equivariant Graph Neural Networks with Complete Local Frames
Weitao Du
He Zhang
Yuanqi Du
Qi Meng
Wei Chen
Bin Shao
Tie-Yan Liu
56
79
0
26 Oct 2021
Surrogate- and invariance-boosted contrastive learning for data-scarce
  applications in science
Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science
Charlotte Loh
T. Christensen
Rumen Dangovski
Samuel Kim
Marin Soljacic
32
16
0
15 Oct 2021
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave
  Functions
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions
Nicholas Gao
Stephan Günnemann
27
36
0
11 Oct 2021
Geometric and Physical Quantities Improve E(3) Equivariant Message
  Passing
Geometric and Physical Quantities Improve E(3) Equivariant Message Passing
Johannes Brandstetter
Rob D. Hesselink
Elise van der Pol
Erik J. Bekkers
Max Welling
17
229
0
06 Oct 2021
Geometric Algebra Attention Networks for Small Point Clouds
Geometric Algebra Attention Networks for Small Point Clouds
Matthew Spellings
3DPC
50
12
0
05 Oct 2021
Applying Machine Learning to Study Fluid Mechanics
Applying Machine Learning to Study Fluid Mechanics
Steven L. Brunton
PINN
AI4CE
39
95
0
05 Oct 2021
Differentiable Physics: A Position Piece
Differentiable Physics: A Position Piece
Bharath Ramsundar
Dilip Krishnamurthy
V. Viswanathan
PINN
AI4CE
40
14
0
14 Sep 2021
Inverse design of 3d molecular structures with conditional generative
  neural networks
Inverse design of 3d molecular structures with conditional generative neural networks
Niklas W. A. Gebauer
M. Gastegger
Stefaan S. P. Hessmann
Klaus-Robert Muller
Kristof T. Schütt
AI4CE
192
166
0
10 Sep 2021
Supervised Learning and the Finite-Temperature String Method for
  Computing Committor Functions and Reaction Rates
Supervised Learning and the Finite-Temperature String Method for Computing Committor Functions and Reaction Rates
Muhammad R Hasyim
Clay H. Batton
K. Mandadapu
24
10
0
28 Jul 2021
Geometric Deep Learning on Molecular Representations
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
34
287
0
26 Jul 2021
Data efficiency in graph networks through equivariance
Data efficiency in graph networks through equivariance
Francesco Farina
E. Slade
15
1
0
25 Jun 2021
Rotation Invariant Graph Neural Networks using Spin Convolutions
Rotation Invariant Graph Neural Networks using Spin Convolutions
Muhammed Shuaibi
Adeesh Kolluru
Abhishek Das
Aditya Grover
Anuroop Sriram
Zachary W. Ulissi
C. L. Zitnick
AI4CE
30
67
0
17 Jun 2021
Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond
Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond
Jonathan Godwin
Michael Schaarschmidt
Alex Gaunt
Alvaro Sanchez-Gonzalez
Yulia Rubanova
Petar Velivcković
J. Kirkpatrick
Peter W. Battaglia
41
60
0
15 Jun 2021
Equivariant Graph Neural Networks for 3D Macromolecular Structure
Equivariant Graph Neural Networks for 3D Macromolecular Structure
Bowen Jing
Stephan Eismann
Pratham N. Soni
R. Dror
17
95
0
07 Jun 2021
Detect the Interactions that Matter in Matter: Geometric Attention for
  Many-Body Systems
Detect the Interactions that Matter in Matter: Geometric Attention for Many-Body Systems
Thorben Frank
Stefan Chmiela
23
3
0
04 Jun 2021
SE(3)-equivariant prediction of molecular wavefunctions and electronic
  densities
SE(3)-equivariant prediction of molecular wavefunctions and electronic densities
Oliver T. Unke
Mihail Bogojeski
M. Gastegger
Mario Geiger
Tess E. Smidt
Klaus-Robert Muller
31
86
0
04 Jun 2021
Informing Geometric Deep Learning with Electronic Interactions to
  Accelerate Quantum Chemistry
Informing Geometric Deep Learning with Electronic Interactions to Accelerate Quantum Chemistry
Zhuoran Qiao
Anders S. Christensen
Matthew Welborn
F. Manby
Anima Anandkumar
Thomas F. Miller
16
74
0
31 May 2021
Symmetry-driven graph neural networks
Symmetry-driven graph neural networks
Francesco Farina
E. Slade
37
4
0
28 May 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
177
246
0
01 May 2021
Equivariant geometric learning for digital rock physics: estimating
  formation factor and effective permeability tensors from Morse graph
Equivariant geometric learning for digital rock physics: estimating formation factor and effective permeability tensors from Morse graph
Chen Cai
Nikolaos N. Vlassis
Lucas Magee
R. Ma
Zeyu Xiong
B. Bahmani
T. Wong
Yusu Wang
WaiChing Sun
22
16
0
12 Apr 2021
Beyond permutation equivariance in graph networks
Beyond permutation equivariance in graph networks
E. Slade
Francesco Farina
29
3
0
25 Mar 2021
Spherical Message Passing for 3D Graph Networks
Spherical Message Passing for 3D Graph Networks
Yi Liu
Limei Wang
Meng Liu
Xuan Zhang
Bora Oztekin
Shuiwang Ji
GNN
22
197
0
09 Feb 2021
Equivariant message passing for the prediction of tensorial properties
  and molecular spectra
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
36
512
0
05 Feb 2021
Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey
Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey
M. Rath
A. P. Condurache
ViT
AI4CE
32
9
0
30 Jun 2020
TeaNet: universal neural network interatomic potential inspired by
  iterative electronic relaxations
TeaNet: universal neural network interatomic potential inspired by iterative electronic relaxations
So Takamoto
S. Izumi
Ju Li
GNN
29
76
0
02 Dec 2019
Previous
12345678