Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.03164
Cited By
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
8 January 2021
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials"
50 / 396 papers shown
Title
Quotient Complex Transformer (QCformer) for Perovskite Data Analysis
Xinyu You
Xiang Liu
Chuan-Shen Hu
Kelin Xia
Tze Chien Sum
21
0
0
14 May 2025
Enhancing the Efficiency of Complex Systems Crystal Structure Prediction by Active Learning Guided Machine Learning Potential
Jiaxiang Li
Junwei Feng
Jie Luo
Bowen Jiang
Xiangyu Zheng
...
Keith Butler
Hanyu Liu
Congwei Xie
Yu Xie
Yanming Ma
26
0
0
13 May 2025
Representing spherical tensors with scalar-based machine-learning models
Michelangelo Domina
Filippo Bigi
Paolo Pegolo
Michele Ceriotti
45
0
0
08 May 2025
Learning simple heuristic rules for classifying materials based on chemical composition
Andrew Ma
Marin Soljacic
28
0
0
05 May 2025
RISE: Radius of Influence based Subgraph Extraction for 3D Molecular Graph Explanation
J. Qu
Wenhan Gao
Jiaxing Zhang
Xufeng Liu
Hua Wei
Haibin Ling
Yong-Jin Liu
AI4CE
57
0
0
04 May 2025
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Maximilian Stupp
P. S. Koutsourelakis
40
0
0
29 Apr 2025
MatterTune: An Integrated, User-Friendly Platform for Fine-Tuning Atomistic Foundation Models to Accelerate Materials Simulation and Discovery
Lingyu Kong
Nima Shoghi
Guoxiang Hu
Pan Li
Victor Fung
33
0
0
14 Apr 2025
Data Fusion of Deep Learned Molecular Embeddings for Property Prediction
Robert Appleton
Brian C Barnes
Alejandro Strachan
FedML
AI4CE
34
0
0
09 Apr 2025
Machine learning interatomic potential can infer electrical response
Peichen Zhong
Dongjin Kim
Daniel S. King
Bingqing Cheng
32
1
0
07 Apr 2025
Cross-functional transferability in universal machine learning interatomic potentials
Xu Huang
B. Deng
Peichen Zhong
Aaron D. Kaplan
Kristin A. Persson
Gerbrand Ceder
29
0
0
07 Apr 2025
Learning Sparse Disentangled Representations for Multimodal Exclusion Retrieval
Prachi
Sumit Bhatia
Srikanta Bedathur
36
0
0
04 Apr 2025
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Alexander Windmann
Henrik S. Steude
Daniel Boschmann
Oliver Niggemann
OOD
AI4TS
36
0
0
04 Apr 2025
Towards scientific machine learning for granular material simulations -- challenges and opportunities
Marc Fransen
Andreas Fürst
D. Tunuguntla
Daniel N. Wilke
Benedikt Alkin
...
Takayuki Shuku
WaiChing Sun
T. Weinhart
Dongwei Ye
Hongyang Cheng
AI4CE
31
0
0
01 Apr 2025
Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Fabian L. Thiemann
Thiago Reschützegger
Massimiliano Esposito
Tseden Taddese
Juan D. Olarte-Plata
Fausto Martelli
AI4CE
52
0
0
31 Mar 2025
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
37
0
0
30 Mar 2025
Equivariant Machine Learning Interatomic Potentials with Global Charge Redistribution
Moin Uddin Maruf
Sungmin Kim
Zeeshan Ahmad
28
0
0
23 Mar 2025
Machine learning surrogate models of many-body dispersion interactions in polymer melts
Zhaoxiang Shen
Raúl I. Sosa
J. Lengiewicz
Alexandre Tkatchenko
Stéphane P. A. Bordas
AI4CE
45
0
0
19 Mar 2025
Strain Problems got you in a Twist? Try StrainRelief: A Quantum-Accurate Tool for Ligand Strain Calculations
Ewan R. S. Wallace
Nathan C. Frey
Joshua A. Rackers
48
0
0
17 Mar 2025
Permutation Equivariant Neural Networks for Symmetric Tensors
Edward Pearce-Crump
53
0
0
14 Mar 2025
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
59
4
0
12 Mar 2025
CrystalFramer: Rethinking the Role of Frames for SE(3)-Invariant Crystal Structure Modeling
Yusei Ito
Tatsunori Taniai
Ryo Igarashi
Yoshitaka Ushiku
K. Ono
60
0
0
04 Mar 2025
How simple can you go? An off-the-shelf transformer approach to molecular dynamics
Max Eissler
Tim Korjakow
Stefan Ganscha
Oliver T. Unke
Klaus-Robert Müller
Stefan Gugler
63
1
0
03 Mar 2025
Learning with Exact Invariances in Polynomial Time
Ashkan Soleymani
B. Tahmasebi
Stefanie Jegelka
P. Jaillet
78
0
0
27 Feb 2025
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Bin Shao
Mark B. Gerstein
77
0
0
26 Feb 2025
A Materials Foundation Model via Hybrid Invariant-Equivariant Architectures
Keqiang Yan
Montgomery Bohde
Andrii Kryvenko
Ziyu Xiang
Kaiji Zhao
...
Jianwen Xie
Raymundo Arróyave
X. Qian
Xiaofeng Qian
Shuiwang Ji
47
0
0
25 Feb 2025
Erwin: A Tree-based Hierarchical Transformer for Large-scale Physical Systems
Maksim Zhdanov
Max Welling
Jan-Willem van de Meent
AI4CE
49
1
0
24 Feb 2025
Effective Field Neural Network
Xi Liu
Yujun Zhao
Chun Yu Wan
Yang Zhang
Junwei Liu
AI4CE
38
0
0
24 Feb 2025
Geometric Kolmogorov-Arnold Superposition Theorem
Francesco Alesiani
Takashi Maruyama
Henrik Christiansen
Viktor Zaverkin
57
0
0
23 Feb 2025
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
Maya Bechler-Speicher
Ben Finkelshtein
Fabrizio Frasca
Luis Muller
Jan Tonshoff
...
Michael M. Bronstein
Mathias Niepert
Bryan Perozzi
Mikhail Galkin
Christopher Morris
OOD
97
2
0
21 Feb 2025
Improving the Stability of GNN Force Field Models by Reducing Feature Correlation
Y. Zeng
Wenlong He
Ihor Vasyltsov
Jiaxin Wei
Ying Zhang
Lin Chen
Yuehua Dai
41
0
0
18 Feb 2025
MatterChat: A Multi-Modal LLM for Material Science
Yingheng Tang
Wenbin Xu
Jie Cao
Jianzhu Ma
Weilu Gao
Steve Farrell
Benjamin Erichson
Michael W. Mahoney
Andy Nonaka
113
3
0
18 Feb 2025
Fast and Accurate Antibody Sequence Design via Structure Retrieval
Xingyi Zhang
Kun Xie
Ningqiao Huang
Wei Liu
Peilin Zhao
Sibo Wang
Kangfei Zhao
Biaobin Jiang
46
0
0
11 Feb 2025
Neumann eigenmaps for landmark embedding
Shashank Sule
Wojciech Czaja
55
0
0
10 Feb 2025
Diagonal Symmetrization of Neural Network Solvers for the Many-Electron Schr\"odinger Equation
Kevin Han Huang
Ni Zhan
Elif Ertekin
Peter Orbanz
Ryan P. Adams
56
0
0
07 Feb 2025
Deep Neural Network for Phonon-Assisted Optical Spectra in Semiconductors
Qiangqiang Gu
S. K. Pandey
Zhanghao Zhouyin
61
0
0
02 Feb 2025
Learning Non-Local Molecular Interactions via Equivariant Local Representations and Charge Equilibration
Paul Fuchs
Michał Sanocki
Julija Zavadlav
39
0
0
31 Jan 2025
Learning local equivariant representations for quantum operators
Zhanghao Zhouyin
Zixi Gan
MingKang Liu
S. K. Pandey
Linfeng Zhang
Qiangqiang Gu
85
3
0
28 Jan 2025
Dynami-CAL GraphNet: A Physics-Informed Graph Neural Network Conserving Linear and Angular Momentum for Dynamical Systems
Vinay Sharma
Olga Fink
AI4CE
47
1
0
13 Jan 2025
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Matthias Holzenkamp
Dongyu Lyu
Ulrich Kleinekathöfer
Peter Zaspel
35
0
0
10 Jan 2025
Predicting band gap from chemical composition: A simple learned model for a material property with atypical statistics
Andrew Ma
Owen Dugan
Marin Soljacic
37
0
0
06 Jan 2025
Rethinking Addressing in Language Models via Contexualized Equivariant Positional Encoding
Jiajun Zhu
Peihao Wang
Ruisi Cai
Jason D. Lee
Pan Li
Zhilin Wang
KELM
45
1
0
03 Jan 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CE
GNN
52
0
0
30 Dec 2024
Learning charges and long-range interactions from energies and forces
Dongjin Kim
Daniel S. King
Peichen Zhong
Bingqing Cheng
93
5
0
19 Dec 2024
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
Filippo Bigi
Marcel F. Langer
Michele Ceriotti
AI4CE
93
7
0
16 Dec 2024
Implicit Delta Learning of High Fidelity Neural Network Potentials
Stephan Thaler
Cristian Gabellini
Nikhil Shenoy
Prudencio Tossou
AI4CE
87
0
0
08 Dec 2024
Accelerating CALPHAD-based Phase Diagram Predictions in Complex Alloys Using Universal Machine Learning Potentials: Opportunities and Challenges
Siya Zhu
Raymundo Arróyave
Doğuhan Sarıtürk
AI4CE
66
3
0
22 Nov 2024
NeuralDEM -- Real-time Simulation of Industrial Particulate Flows
Benedikt Alkin
Tobias Kronlachner
Samuele Papa
Stefan Pirker
Thomas Lichtenegger
Johannes Brandstetter
PINN
AI4CE
54
1
1
14 Nov 2024
Predicting ionic conductivity in solids from the machine-learned potential energy landscape
Artem Maevskiy
Alexandra Carvalho
Emil Sataev
Volha Turchyna
Keian Noori
Aleksandr Rodin
A. H. Castro Neto
Andrey E. Ustyuzhanin
39
0
0
11 Nov 2024
Equivariant Graph Network Approximations of High-Degree Polynomials for Force Field Prediction
Zhao Xu
Haiyang Yu
Montgomery Bohde
Shuiwang Ji
42
0
0
06 Nov 2024
Bridging Geometric States via Geometric Diffusion Bridge
Shengjie Luo
Yixian Xu
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
39
0
0
31 Oct 2024
1
2
3
4
5
6
7
8
Next