ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10108
  4. Cited By
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness

Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness

17 June 2020
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness"

46 / 296 papers shown
Title
No True State-of-the-Art? OOD Detection Methods are Inconsistent across
  Datasets
No True State-of-the-Art? OOD Detection Methods are Inconsistent across Datasets
Fahim Tajwar
Ananya Kumar
Sang Michael Xie
Percy Liang
OODD
22
21
0
12 Sep 2021
Uncertainty-Aware Credit Card Fraud Detection Using Deep Learning
Uncertainty-Aware Credit Card Fraud Detection Using Deep Learning
Maryam Habibpour
Hassan Gharoun
M. Mehdipour
AmirReza Tajally
Hamzeh Asgharnezhad
Afshar Shamsi Jokandan
Abbas Khosravi
M. Shafie‐khah
S. Nahavandi
J. Catalão
25
45
0
28 Jul 2021
Epistemic Neural Networks
Epistemic Neural Networks
Ian Osband
Zheng Wen
M. Asghari
Vikranth Dwaracherla
M. Ibrahimi
Xiyuan Lu
Benjamin Van Roy
UQCV
BDL
30
97
0
19 Jul 2021
BEDS-Bench: Behavior of EHR-models under Distributional Shift--A
  Benchmark
BEDS-Bench: Behavior of EHR-models under Distributional Shift--A Benchmark
Anand Avati
Martin G. Seneviratne
Emily Xue
Zhen Xu
Balaji Lakshminarayanan
Andrew M. Dai
OOD
CML
20
8
0
17 Jul 2021
Shifts: A Dataset of Real Distributional Shift Across Multiple
  Large-Scale Tasks
Shifts: A Dataset of Real Distributional Shift Across Multiple Large-Scale Tasks
A. Malinin
Neil Band
Ganshin
Alexander
German Chesnokov
...
Roginskiy
Denis
Mariya Shmatova
Panos Tigas
Boris Yangel
UQCV
OOD
29
127
0
15 Jul 2021
What classifiers know what they don't?
What classifiers know what they don't?
Mohamed Ishmael Belghazi
David Lopez-Paz
22
6
0
13 Jul 2021
Measuring and Improving Model-Moderator Collaboration using Uncertainty
  Estimation
Measuring and Improving Model-Moderator Collaboration using Uncertainty Estimation
Ian D Kivlichan
Zi Lin
J. Liu
Lucy Vasserman
14
19
0
09 Jul 2021
Towards Robust Active Feature Acquisition
Towards Robust Active Feature Acquisition
Yang Li
Siyuan Shan
Qin Liu
Junier B. Oliva
TPM
15
4
0
09 Jul 2021
On the Practicality of Deterministic Epistemic Uncertainty
On the Practicality of Deterministic Epistemic Uncertainty
Janis Postels
Mattia Segu
Tao Sun
Luca Sieber
Luc Van Gool
F. I. F. Richard Yu
Federico Tombari
UQCV
25
59
0
01 Jul 2021
Repulsive Deep Ensembles are Bayesian
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
53
94
0
22 Jun 2021
A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection
A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection
Jie Jessie Ren
Stanislav Fort
J. Liu
Abhijit Guha Roy
Shreyas Padhy
Balaji Lakshminarayanan
UQCV
33
216
0
16 Jun 2021
Test Sample Accuracy Scales with Training Sample Density in Neural
  Networks
Test Sample Accuracy Scales with Training Sample Density in Neural Networks
Xu Ji
Razvan Pascanu
Devon Hjelm
Balaji Lakshminarayanan
Andrea Vedaldi
36
7
0
15 Jun 2021
Understanding Softmax Confidence and Uncertainty
Understanding Softmax Confidence and Uncertainty
Tim Pearce
Alexandra Brintrup
Jun Zhu
UQCV
14
87
0
09 Jun 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
21
31
0
09 Jun 2021
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep
  Learning
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning
Zachary Nado
Neil Band
Mark Collier
Josip Djolonga
Michael W. Dusenberry
...
D. Sculley
Balaji Lakshminarayanan
Jasper Snoek
Y. Gal
Dustin Tran
UQCV
ELM
29
96
0
07 Jun 2021
Can a single neuron learn predictive uncertainty?
Can a single neuron learn predictive uncertainty?
Edgardo Solano-Carrillo
UQCV
29
1
0
07 Jun 2021
Exploring the Limits of Out-of-Distribution Detection
Exploring the Limits of Out-of-Distribution Detection
Stanislav Fort
Jie Jessie Ren
Balaji Lakshminarayanan
27
325
0
06 Jun 2021
Can convolutional ResNets approximately preserve input distances? A
  frequency analysis perspective
Can convolutional ResNets approximately preserve input distances? A frequency analysis perspective
Lewis Smith
Joost R. van Amersfoort
Haiwen Huang
Stephen J. Roberts
Y. Gal
25
7
0
04 Jun 2021
Enhanced Isotropy Maximization Loss: Seamless and High-Performance
  Out-of-Distribution Detection Simply Replacing the SoftMax Loss
Enhanced Isotropy Maximization Loss: Seamless and High-Performance Out-of-Distribution Detection Simply Replacing the SoftMax Loss
David Macêdo
Teresa B Ludermir
OODD
23
12
0
30 May 2021
Understanding Uncertainty in Bayesian Deep Learning
Understanding Uncertainty in Bayesian Deep Learning
Cooper Lorsung
BDL
UQCV
4
0
0
21 May 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation
  Perspective
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation Perspective
Florin Gogianu
Tudor Berariu
Mihaela Rosca
Claudia Clopath
L. Buşoniu
Razvan Pascanu
21
52
0
11 May 2021
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential
  Family Distributions
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential Family Distributions
Bertrand Charpentier
Oliver Borchert
Daniel Zügner
Simon Geisler
Stephan Günnemann
UQCV
BDL
27
17
0
10 May 2021
Generating Interpretable Counterfactual Explanations By Implicit
  Minimisation of Epistemic and Aleatoric Uncertainties
Generating Interpretable Counterfactual Explanations By Implicit Minimisation of Epistemic and Aleatoric Uncertainties
Lisa Schut
Oscar Key
R. McGrath
Luca Costabello
Bogdan Sacaleanu
Medb Corcoran
Y. Gal
CML
17
47
0
16 Mar 2021
Posterior Meta-Replay for Continual Learning
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLL
BDL
51
54
0
01 Mar 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
Deep Deterministic Uncertainty: A Simple Baseline
Deep Deterministic Uncertainty: A Simple Baseline
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip Torr
Y. Gal
UD
UQCV
PER
BDL
24
145
0
23 Feb 2021
On Feature Collapse and Deep Kernel Learning for Single Forward Pass
  Uncertainty
On Feature Collapse and Deep Kernel Learning for Single Forward Pass Uncertainty
Joost R. van Amersfoort
Lewis Smith
Andrew Jesson
Oscar Key
Y. Gal
UQCV
24
102
0
22 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
204
81
0
16 Feb 2021
Don't Just Blame Over-parametrization for Over-confidence: Theoretical
  Analysis of Calibration in Binary Classification
Don't Just Blame Over-parametrization for Over-confidence: Theoretical Analysis of Calibration in Binary Classification
Yu Bai
Song Mei
Haiquan Wang
Caiming Xiong
17
42
0
15 Feb 2021
Estimation and Applications of Quantiles in Deep Binary Classification
Estimation and Applications of Quantiles in Deep Binary Classification
Anuj Tambwekar
Anirudh Maiya
S. Dhavala
Snehanshu Saha
UQCV
8
7
0
09 Feb 2021
Revisiting Mahalanobis Distance for Transformer-Based Out-of-Domain
  Detection
Revisiting Mahalanobis Distance for Transformer-Based Out-of-Domain Detection
Alexander Podolskiy
Dmitry Lipin
A. Bout
Ekaterina Artemova
Irina Piontkovskaya
OODD
95
82
0
11 Jan 2021
A case for new neural network smoothness constraints
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
A. Gretton
S. Mohamed
AAML
33
48
0
14 Dec 2020
Know Your Limits: Uncertainty Estimation with ReLU Classifiers Fails at
  Reliable OOD Detection
Know Your Limits: Uncertainty Estimation with ReLU Classifiers Fails at Reliable OOD Detection
Dennis Ulmer
Giovanni Cina
OODD
35
31
0
09 Dec 2020
Feature Space Singularity for Out-of-Distribution Detection
Feature Space Singularity for Out-of-Distribution Detection
Haiwen Huang
Zhihan Li
Lulu Wang
Sishuo Chen
Bin Dong
Xinyu Zhou
OODD
22
65
0
30 Nov 2020
Uncertainty as a Form of Transparency: Measuring, Communicating, and
  Using Uncertainty
Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty
Umang Bhatt
Javier Antorán
Yunfeng Zhang
Q. V. Liao
P. Sattigeri
...
L. Nachman
R. Chunara
Madhulika Srikumar
Adrian Weller
Alice Xiang
22
247
0
15 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
51
1,879
0
12 Nov 2020
Hierarchical Gaussian Processes with Wasserstein-2 Kernels
Hierarchical Gaussian Processes with Wasserstein-2 Kernels
S. Popescu
D. Sharp
James H. Cole
Ben Glocker
22
5
0
28 Oct 2020
Empirical Frequentist Coverage of Deep Learning Uncertainty
  Quantification Procedures
Empirical Frequentist Coverage of Deep Learning Uncertainty Quantification Procedures
Benjamin Kompa
Jasper Snoek
Andrew L. Beam
UQCV
BDL
26
29
0
06 Oct 2020
Beyond Point Estimate: Inferring Ensemble Prediction Variation from
  Neuron Activation Strength in Recommender Systems
Beyond Point Estimate: Inferring Ensemble Prediction Variation from Neuron Activation Strength in Recommender Systems
Zhe Chen
Yuyan Wang
Dong Lin
D. Cheng
Lichan Hong
Ed H. Chi
Claire Cui
28
16
0
17 Aug 2020
An Uncertainty-aware Transfer Learning-based Framework for Covid-19
  Diagnosis
An Uncertainty-aware Transfer Learning-based Framework for Covid-19 Diagnosis
Afshar Shamsi
Hamzeh Asgharnezhad
Shirin Shamsi Jokandan
Abbas Khosravi
P. Kebria
D. Nahavandi
S. Nahavandi
D. Srinivasan
OOD
8
133
0
26 Jul 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using
  Multi-Headed Auxiliary Networks
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDL
UQCV
27
4
0
21 Jun 2020
Representing smooth functions as compositions of near-identity functions
  with implications for deep network optimization
Representing smooth functions as compositions of near-identity functions with implications for deep network optimization
Peter L. Bartlett
S. Evans
Philip M. Long
73
31
0
13 Apr 2018
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in
  Gaussian Process Hybrid Deep Networks
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
68
171
0
08 Jul 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
89
271
0
24 Feb 2014
Previous
123456