Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.10108
Cited By
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
17 June 2020
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness"
50 / 296 papers shown
Title
Effective Data Selection for Seismic Interpretation through Disagreement
Ryan Benkert
Mohit Prabhushankar
Ghassan AlRegib
37
2
0
01 Jun 2024
A Structured Review of Literature on Uncertainty in Machine Learning & Deep Learning
Fahimeh Fakour
Ali Mosleh
Ramin Ramezani
UQCV
UD
PER
43
1
0
01 Jun 2024
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
62
1
0
31 May 2024
Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities
Alexander Nikitin
Jannik Kossen
Yarin Gal
Pekka Marttinen
UQCV
53
23
0
30 May 2024
When and How Does In-Distribution Label Help Out-of-Distribution Detection?
Xuefeng Du
Yiyou Sun
Yixuan Li
37
7
0
28 May 2024
Confidence-aware multi-modality learning for eye disease screening
K. Zou
Tian Lin
Zongbo Han
Meng Wang
Xuedong Yuan
Haoyu Chen
Changqing Zhang
Xiaojing Shen
Huazhu Fu
61
3
0
28 May 2024
Transitional Uncertainty with Layered Intermediate Predictions
Ryan Benkert
Mohit Prabhushankar
Ghassan AlRegib
48
1
0
25 May 2024
Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification
Kaizheng Wang
Fabio Cuzzolin
Keivan K1 Shariatmadar
David Moens
Hans Hallez
UQCV
BDL
85
6
0
23 May 2024
Efficient Two-Stage Gaussian Process Regression Via Automatic Kernel Search and Subsampling
Shifan Zhao
Jiaying Lu
Carl Yang
Edmond Chow
Yuanzhe Xi
44
1
0
22 May 2024
Weakly-Supervised Residual Evidential Learning for Multi-Instance Uncertainty Estimation
Pei Liu
Luping Ji
EDL
29
4
0
07 May 2024
Combining Statistical Depth and Fermat Distance for Uncertainty Quantification
Hai-Vy Nguyen
Fabrice Gamboa
Reda Chhaibi
Sixin Zhang
Serge Gratton
Thierry Giaccone
FedML
UQCV
23
0
0
12 Apr 2024
Efficient Training of Probabilistic Neural Networks for Survival Analysis
Christian Marius Lillelund
Martin Magris
Christian Fischer Pedersen
28
3
0
09 Apr 2024
Kermut: Composite kernel regression for protein variant effects
Peter Mørch Groth
Mads Herbert Kerrn
Lars Olsen
Jesper Salomon
Wouter Boomsma
42
2
0
09 Apr 2024
Hierarchical Insights: Exploiting Structural Similarities for Reliable 3D Semantic Segmentation
M. Dreissig
Florian Piewak
Joschka Boedecker
35
1
0
09 Apr 2024
MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation
Taha Koleilat
Hojat Asgariandehkordi
H. Rivaz
Yiming Xiao
VLM
MedIm
50
9
0
29 Mar 2024
Informed Spectral Normalized Gaussian Processes for Trajectory Prediction
Christian Schlauch
Christian Wirth
Nadja Klein
29
1
0
18 Mar 2024
Density-Regression: Efficient and Distance-Aware Deep Regressor for Uncertainty Estimation under Distribution Shifts
H. Bui
Anqi Liu
OOD
BDL
UQCV
46
4
0
07 Mar 2024
A prediction rigidity formalism for low-cost uncertainties in trained neural networks
Filippo Bigi
Sanggyu Chong
Michele Ceriotti
Federico Grasselli
52
5
0
04 Mar 2024
Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for Specialized Tasks
Bálint Mucsányi
Michael Kirchhof
Seong Joon Oh
UQCV
BDL
OODD
431
20
1
29 Feb 2024
Mitigating Distributional Shift in Semantic Segmentation via Uncertainty Estimation from Unlabelled Data
David S. W. Williams
Daniele De Martini
Matthew Gadd
Paul Newman
UQCV
29
5
0
27 Feb 2024
Masked Gamma-SSL: Learning Uncertainty Estimation via Masked Image Modeling
David S. W. Williams
Matthew Gadd
Paul Newman
Daniele De Martini
UQCV
22
1
0
27 Feb 2024
Pretrained Visual Uncertainties
Michael Kirchhof
Mark Collier
Seong Joon Oh
Enkelejda Kasneci
UQCV
410
8
1
26 Feb 2024
Discriminant Distance-Aware Representation on Deterministic Uncertainty Quantification Methods
Jiaxin Zhang
Kamalika Das
Kumar Sricharan
UQCV
35
0
0
20 Feb 2024
Predictive Uncertainty Quantification via Risk Decompositions for Strictly Proper Scoring Rules
Nikita Kotelevskii
Maxim Panov
PER
UQCV
UD
37
3
0
16 Feb 2024
Efficient Multi-task Uncertainties for Joint Semantic Segmentation and Monocular Depth Estimation
S. Landgraf
Markus Hillemann
Theodor Kapler
Markus Ulrich
UQCV
26
8
0
16 Feb 2024
Understanding Likelihood of Normalizing Flow and Image Complexity through the Lens of Out-of-Distribution Detection
Genki Osada
Tsubasa Takahashi
Takashi Nishide
OODD
6
1
0
16 Feb 2024
UR2M: Uncertainty and Resource-Aware Event Detection on Microcontrollers
Hong Jia
Young D. Kwon
Dong Ma
Nhat Pham
Lorena Qendro
Tam N. Vu
Cecilia Mascolo
27
2
0
14 Feb 2024
Predictive Churn with the Set of Good Models
J. Watson-Daniels
Flavio du Pin Calmon
Alexander DÁmour
Carol Xuan Long
David C. Parkes
Berk Ustun
83
7
0
12 Feb 2024
Bayesian Vector AutoRegression with Factorised Granger-Causal Graphs
He Zhao
V. Kitsios
Terry O'Kane
Edwin V. Bonilla
CML
24
1
0
06 Feb 2024
How Does Unlabeled Data Provably Help Out-of-Distribution Detection?
Xuefeng Du
Zhen Fang
Ilias Diakonikolas
Yixuan Li
OODD
43
27
0
05 Feb 2024
Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian Processes
Yingyi Chen
Qinghua Tao
F. Tonin
Johan A. K. Suykens
22
1
0
02 Feb 2024
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
36
5
0
02 Feb 2024
Inadequacy of common stochastic neural networks for reliable clinical decision support
Adrian Lindenmeyer
Malte Blattmann
S. Franke
Thomas Neumuth
Daniel Schneider
BDL
35
1
0
24 Jan 2024
Uncertainty Awareness of Large Language Models Under Code Distribution Shifts: A Benchmark Study
Yufei Li
Simin Chen
Yanghong Guo
Wei Yang
Yue Dong
Cong Liu
UQCV
25
1
0
12 Jan 2024
Wasserstein Distance-based Expansion of Low-Density Latent Regions for Unknown Class Detection
Prakash Mallick
Feras Dayoub
Jamie Sherrah
19
1
0
10 Jan 2024
Generative Posterior Networks for Approximately Bayesian Epistemic Uncertainty Estimation
Melrose Roderick
Felix Berkenkamp
Fatemeh Sheikholeslami
Zico Kolter
UQCV
16
0
0
29 Dec 2023
Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate Reward Hacking
Jacob Eisenstein
Chirag Nagpal
Alekh Agarwal
Ahmad Beirami
Alex DÁmour
...
Katherine Heller
Stephen R. Pfohl
Deepak Ramachandran
Peter Shaw
Jonathan Berant
32
82
0
14 Dec 2023
Thermodynamic Computing System for AI Applications
Denis Melanson
M. A. Khater
Maxwell Aifer
Kaelan Donatella
Max Hunter Gordon
Thomas Dybdahl Ahle
Gavin Crooks
Antonio J. Martinez
Faris M. Sbahi
Patrick J. Coles
AI4CE
23
6
0
08 Dec 2023
Transferable Candidate Proposal with Bounded Uncertainty
Kyeongryeol Go
Kye-Hyeon Kim
31
0
0
07 Dec 2023
Uncertainty Estimation on Sequential Labeling via Uncertainty Transmission
Jianfeng He
Linlin Yu
Shuo Lei
Chang-Tien Lu
Feng Chen
UQLM
20
8
0
15 Nov 2023
Introducing an Improved Information-Theoretic Measure of Predictive Uncertainty
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
Sepp Hochreiter
28
11
0
14 Nov 2023
Improvements on Uncertainty Quantification for Node Classification via Distance-Based Regularization
Russell Hart
Linlin Yu
Yifei Lou
Feng Chen
UQCV
20
4
0
10 Nov 2023
Better with Less: A Data-Active Perspective on Pre-Training Graph Neural Networks
Jiarong Xu
Renhong Huang
Xin Jiang
Yuxuan Cao
Carl Yang
Chunping Wang
Yang Yang
AI4CE
31
14
0
02 Nov 2023
Uncertainty quantification and out-of-distribution detection using surjective normalizing flows
Simon Dirmeier
Ye Hong
Yanan Xin
Fernando Pérez-Cruz
UQCV
28
1
0
01 Nov 2023
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods
Ling Huang
S. Ruan
Yucheng Xing
Mengling Feng
41
20
0
09 Oct 2023
Out-of-Distribution Detection by Leveraging Between-Layer Transformation Smoothness
Fran Jelenić
Josip Jukić
Martin Tutek
Mate Puljiz
Jan vSnajder
OODD
26
5
0
04 Oct 2023
Uncertainty Aware Deep Learning for Particle Accelerators
Kishansingh Rajput
Malachi Schram
Karthik Somayaji
17
2
0
25 Sep 2023
Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation for Earth System Science Applications
John S. Schreck
D. Gagne
Charlie Becker
William E. Chapman
K. Elmore
...
Vanessa M. Pryzbylo
Jacob T. Radford
B. Saavedra
Justin Willson
Christopher D. Wirz
BDL
UD
OOD
UQCV
EDL
13
8
0
22 Sep 2023
LMC: Large Model Collaboration with Cross-assessment for Training-Free Open-Set Object Recognition
Haoxuan Qu
Xiaofei Hui
Yujun Cai
Jun Liu
49
10
0
22 Sep 2023
PAGER: A Framework for Failure Analysis of Deep Regression Models
Jayaraman J. Thiagarajan
V. Narayanaswamy
Puja Trivedi
Rushil Anirudh
33
0
0
20 Sep 2023
Previous
1
2
3
4
5
6
Next